Robust and fault-tolerant spacecraft attitude control based on an extended-observer design

被引:0
|
作者
Alessandro Giuseppi
Francesco Delli Priscoli
Antonio Pietrabissa
机构
[1] La Sapienza,Department of Computer, Control and Management Engineering
[2] University of Rome,undefined
来源
关键词
Extended observer; Spacecraft control; Attitude stabilization;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this work is to develop a robust control strategy able to drive the attitude of a spacecraft to a reference value, despite the presence of unknown but bounded uncertainties in the system parameters and external disturbances. Thanks to the use of an extended observer design, the proposed control law is robust against all the uncertainties that affect the high-frequency gain matrix, which is shown to capture a broad spectrum of modelling issues, some of which are often neglected by traditional approaches. The proposed controller then provides robustness against parametric uncertainties, as moment of inertia estimation, payload deformations, actuator faults and external disturbances, while maintaining its asymptotic properties.
引用
收藏
页码:323 / 337
页数:14
相关论文
共 50 条
  • [1] Robust and fault-tolerant spacecraft attitude control based on an extended-observer design
    Giuseppi, Alessandro
    Delli Priscoli, Francesco
    Pietrabissa, Antonio
    CONTROL THEORY AND TECHNOLOGY, 2022, 20 (03) : 323 - 337
  • [2] Extended state observer-based attitude fault-tolerant control of rigid spacecraft
    Yin, Lijian
    Xia, Yuanqing
    Deng, Zhihong
    Huo, Baoyu
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2018, 49 (12) : 2525 - 2535
  • [3] Fault Diagnosis and Fault-Tolerant Attitude Control of Spacecraft Based on Combined Observer
    Li, Yuandong
    Fang, Yizhong
    Shao, Menghan
    Chen, Xuning
    Shao, Xiaodong
    Hu, Qinglei
    Zheng, Jianying
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7627 - 7632
  • [4] Observer-Based Fault-Tolerant Attitude Control for Rigid Spacecraft
    Li, Bo
    Hu, Qinglei
    Yu, Yanbo
    Ma, Guangfu
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2017, 53 (05) : 2572 - 2582
  • [5] Observer-Based Fault-Tolerant Attitude Control for Spacecraft with Input Delay
    Liu, Chuang
    Vukovich, George
    Sun, Zhaowei
    Shi, Keke
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2018, 41 (09) : 2041 - 2053
  • [6] Active fault-tolerant attitude control of spacecraft based on iterative learning observer
    Cao T.
    Gong H.-J.
    Xue Y.-X.
    Wen L.-D.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2023, 40 (07): : 1323 - 1330
  • [7] Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation
    Hu, Qinglei
    Niu, Guanglin
    Wang, Chenliang
    AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 75 : 245 - 253
  • [8] Robust constrained fault-tolerant attitude control for flexible spacecraft
    Long, Haihui
    Zhao, Jiankang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2018, 232 (16) : 3011 - 3023
  • [9] Control allocation based fault-tolerant control design for spacecraft attitude tracking
    Shen, Qiang
    Wang, Danwei
    Zhu, Senqiang
    Poh, Eng Kee
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 4983 - 4988
  • [10] A novel learning observer-based fault-tolerant attitude control for rigid spacecraft
    Cao, Teng
    Gong, Huajun
    Cheng, Peng
    Xue, Yixuan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 128