On the formation of sharp transition layers in two-dimensional reaction-diffusion models

被引:8
|
作者
Volkov V.T. [1 ]
Grachev N.E. [1 ]
Nefedov N.N. [1 ]
Nikolaev A.N. [1 ]
机构
[1] Faculty of Physics, Moscow State University, Leninskie gory
基金
俄罗斯基础研究基金会;
关键词
Asymptotic solution method; Formation of contrast structures in solutions; Numerical study; Two-dimensional reaction-diffusion models;
D O I
10.1134/S0965542507080088
中图分类号
学科分类号
摘要
For a singularly perturbed parabolic equation in two dimensions, the formation of a solution with a sharp transition layer from a sufficiently general initial function is considered. An asymptotic analysis is used to estimate the time required for the formation of a contrast structure. Numerical results are presented. © 2007 Pleiades Publishing, Ltd.
引用
收藏
页码:1301 / 1309
页数:8
相关论文
共 50 条
  • [1] Pattern formation for a two-dimensional reaction-diffusion model with chemotaxis
    Ma, Manjun
    Gao, Meiyan
    Carretero-Gonzalez, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1883 - 1909
  • [2] Robust IMEX Schemes for Solving Two-Dimensional Reaction-Diffusion Models
    Owolabi, Kolade M.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2015, 16 (06) : 271 - 284
  • [3] Pattern formation in a two-dimensional reaction-diffusion channel with Poiseuille flow
    Kuptsov, PV
    Satnoianu, RA
    Daniels, PG
    PHYSICAL REVIEW E, 2005, 72 (03):
  • [4] TWO-DIMENSIONAL REACTION-DIFFUSION EQUATIONS WITH MEMORY
    Conti, Monica
    Gatti, Stefania
    Grasselli, Maurizio
    Pata, Vittorino
    QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (04) : 607 - 643
  • [5] Two-dimensional pattern formation in reaction-diffusion systems. Influence of the geometry
    Kuo, CS
    Cabarcos, EL
    Bansil, R
    PHYSICA A, 1997, 239 (1-3): : 120 - 128
  • [6] Modulated two-dimensional patterns in reaction-diffusion systems
    Kuske, R
    Milewski, P
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1999, 10 : 157 - 184
  • [7] On a two-dimensional reaction-diffusion system with hypercyclical structure
    Wei, JC
    Winter, M
    NONLINEARITY, 2000, 13 (06) : 2005 - 2032
  • [8] Two-dimensional model of a reaction-diffusion system as a typewriter
    Kawczynski, AL
    Legawiec, B
    PHYSICAL REVIEW E, 2001, 64 (05) : 4 - 056202
  • [9] Feedback Stabilization of Reaction-diffusion Equation in a Two-dimensional Region
    Li, Guoping
    Xie, Chengkang
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2985 - 2989
  • [10] Moving and jumping spot in a two-dimensional reaction-diffusion model
    Xie, Shuangquan
    Kolokolnikov, Theodore
    NONLINEARITY, 2017, 30 (04) : 1536 - 1563