Estimation of the instantaneous volatility

被引:2
|
作者
Alexander Alvarez
Fabien Panloup
Monique Pontier
Nicolas Savy
机构
[1] La Habana University,
[2] Institut de Mathématiques de Toulouse et INSA Toulouse,undefined
[3] Institut de Mathétiques de Toulouse et Université de Toulouse,undefined
关键词
Central limit theorem; Power variation; Semimartingale; Primary 60F05; Secondary 91B70; 91B82;
D O I
10.1007/s11203-011-9062-2
中图分类号
学科分类号
摘要
This paper is concerned with the estimation of the volatility process in a stochastic volatility model of the following form: dXt =  atdt + σtdWt, where X denotes the log-price and σ is a càdlàg semi-martingale. In the spirit of a series of recent works on the estimation of the cumulated volatility, we here focus on the instantaneous volatility for which we study estimators built as finite differences of the power variations of the log-price. We provide central limit theorems with an optimal rate depending on the local behavior of σ. In particular, these theorems yield some confidence intervals for σt.
引用
收藏
页码:27 / 59
页数:32
相关论文
共 50 条
  • [1] G-M INTEGRATED TYPE INSTANTANEOUS VOLATILITY ESTIMATION
    Yang, Shanchao
    Xu, Weiwei
    Yang, Xin
    ADVANCES AND APPLICATIONS IN STATISTICS, 2019, 55 (02) : 175 - 192
  • [2] Non-Parametric Estimation of Intraday Spot Volatility: Disentangling Instantaneous Trend and Seasonality
    Vatter, Thibault
    Wu, Hau-Tieng
    Chavez-Demoulin, Valerie
    Yu, Bin
    ECONOMETRICS, 2015, 3 (04): : 864 - 887
  • [3] ESTIMATING THE INSTANTANEOUS VOLATILITY AND COVARIANCE OF RISKY ASSETS
    CHESNEY, M
    ELLIOTT, RJ
    APPLIED STOCHASTIC MODELS AND DATA ANALYSIS, 1995, 11 (01): : 51 - 58
  • [4] The instantaneous return and volatility of a covered call position
    Edwards, Craig
    APPLIED ECONOMICS LETTERS, 2015, 22 (13) : 1059 - 1063
  • [5] What is the level of volatility in instantaneous driving decisions?
    Wang, Xin
    Khattak, Asad J.
    Liu, Jun
    Masghati-Amoli, Golnush
    Son, Sanghoon
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2015, 58 : 413 - 427
  • [6] The Instantaneous Volatility and the Implied Volatility Surface for a Generalized Black-Scholes Model
    Takaoka, Koichiro
    Futami, Hidenori
    ASIA-PACIFIC FINANCIAL MARKETS, 2010, 17 (04) : 391 - 436
  • [7] On estimation of instantaneous bandwidth
    Ristic, B
    Boashash, B
    PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1996, : 197 - 200
  • [8] Estimation of integrated volatility in stochastic volatility models
    Woerner, JHC
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2005, 21 (01) : 27 - 44
  • [9] HMM volatility estimation
    Elliott, RJ
    Malcolm, WP
    Tsoi, A
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 398 - 404
  • [10] Estimation of the volatility diffusion coefficient for a stochastic volatility model
    Gloter, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (03): : 243 - 248