On the convergence properties of modified augmented Lagrangian methods for mathematical programming with complementarity constraints

被引:0
|
作者
H. Z. Luo
X. L. Sun
Y. F. Xu
H. X. Wu
机构
[1] Fudan University,Department of Management Science, School of Management
[2] Zhejiang University of Technology,Department of Applied Mathematics
[3] Hangzhou Dianzi University,Department of Mathematics
来源
关键词
Mathematical program with complementarity constraints; Modified augmented Lagrangian methods; Nonconvex constrained optimization; Convergence to global solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present new convergence results of augmented Lagrangian methods for mathematical programs with complementarity constraints (MPCC). Modified augmented Lagrangian methods based on four different algorithmic strategies are considered for the constrained nonconvex optimization reformulation of MPCC. We show that the convergence to a global optimal solution of the problem can be ensured without requiring the boundedness condition of the multipliers.
引用
收藏
页码:217 / 232
页数:15
相关论文
共 50 条
  • [1] On the convergence properties of modified augmented Lagrangian methods for mathematical programming with complementarity constraints
    Luo, H. Z.
    Sun, X. L.
    Xu, Y. F.
    Wu, H. X.
    JOURNAL OF GLOBAL OPTIMIZATION, 2010, 46 (02) : 217 - 232
  • [2] Convergence Properties of Modified and Partially-Augmented Lagrangian Methods for Mathematical Programs with Complementarity Constraints
    Luo, H. Z.
    Sun, X. L.
    Xu, Y. F.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 145 (03) : 489 - 506
  • [3] Convergence Properties of Modified and Partially-Augmented Lagrangian Methods for Mathematical Programs with Complementarity Constraints
    H. Z. Luo
    X. L. Sun
    Y. F. Xu
    Journal of Optimization Theory and Applications, 2010, 145 : 489 - 506
  • [4] CONVERGENCE PROPERTIES OF A SECOND ORDER AUGMENTED LAGRANGIAN METHOD FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
    Andreani, Roberto
    Secchin, Leonardo D.
    Silva, Paulo J. S.
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (03) : 2574 - 2600
  • [5] Convergence analysis of an augmented Lagrangian method for mathematical programs with complementarity constraints
    Yang, X. Q.
    Huang, X. X.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E2247 - E2256
  • [6] Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming
    Huixian Wu
    Hezhi Luo
    Xiaodong Ding
    Guanting Chen
    Computational Optimization and Applications, 2013, 56 : 531 - 558
  • [7] Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming
    Wu, Huixian
    Luo, Hezhi
    Ding, Xiaodong
    Chen, Guanting
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 56 (03) : 531 - 558
  • [8] Partial Augmented Lagrangian Method and Mathematical Programs with Complementarity Constraints
    X. X. Huang
    X. Q. Yang
    K. L. Teo
    Journal of Global Optimization, 2006, 35 : 235 - 254
  • [9] Partial augmented Lagrangian method and mathematical programs with complementarity constraints
    Huang, X. X.
    Yang, X. Q.
    Teo, K. L.
    JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (02) : 235 - 254
  • [10] Convergence of a Penalty Method for Mathematical Programming with Complementarity Constraints
    X. M. Hu
    D. Ralph
    Journal of Optimization Theory and Applications, 2004, 123 : 365 - 390