Time-dependent parabolic equations for two-dimensional acoustic waveguides

被引:0
|
作者
M. Yu. Trofimov
机构
[1] Russian Academy of Sciences,Pacific Institute of Oceanology, Far East Division
来源
Technical Physics Letters | 2000年 / 26卷
关键词
Parabolic Equation; Multiscale Method; Acoustic Waveguide; Nonstationary Waveguide;
D O I
暂无
中图分类号
学科分类号
摘要
Time-dependent parabolic equations for the amplitude of a packet of rapidly oscillating waves propagating in a two-dimensional nonstationary waveguide are derived using the multiscale method. The obtained formulas are compared to other known equations.
引用
收藏
页码:797 / 798
页数:1
相关论文
共 50 条
  • [1] Time-dependent parabolic equations for two-dimensional acoustic waveguides
    Trofimov, MY
    TECHNICAL PHYSICS LETTERS, 2000, 26 (09) : 797 - 798
  • [2] Time-dependent simulations of two-dimensional quantum waveguides of arbitrary shape
    Vasil'ev, Valery A.
    Chernov, Pavel S.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE DAYS ON DIFFRACTION 2015, 2015, : 362 - 365
  • [3] Determination of a Time-Dependent Free Boundary in a Two-Dimensional Parabolic Problem
    Huntul M.J.
    Lesnic D.
    International Journal of Applied and Computational Mathematics, 2019, 5 (4)
  • [4] Diffuse optical tomographic imaging of biological media by time-dependent parabolic SPN equations: a two-dimensional study
    Dominguez, Jorge Bouza
    Berube-Lauziere, Yves
    JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (08)
  • [5] Stochastic Two-Dimensional Navier–Stokes Equations on Time-Dependent Domains
    Wei Wang
    Jianliang Zhai
    Tusheng Zhang
    Journal of Theoretical Probability, 2022, 35 : 2916 - 2939
  • [6] Polaritons in Two-Dimensional Parabolic Waveguides
    Rasmussen, T. P.
    Goncalves, P. A. D.
    Xiao, Sanshui
    Hofferberth, Sebastian
    Mortensen, N. Asger
    Cox, Joel D.
    ACS PHOTONICS, 2021, 8 (06) : 1840 - 1846
  • [7] Numerical approximation of a two-dimensional parabolic time-dependent problem containing a delta function
    Bojovic, Dejan R.
    Sredojevic, Bratislav V.
    Jovanovic, Bosko S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 129 - 137
  • [8] Stochastic Two-Dimensional Navier-Stokes Equations on Time-Dependent Domains
    Wang, Wei
    Zhai, Jianliang
    Zhang, Tusheng
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (04) : 2916 - 2939
  • [9] Parabolic equations in time-dependent domains
    Calvo, Juan
    Novaga, Matteo
    Orlandi, Giandomenico
    JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (02) : 781 - 804
  • [10] Parabolic equations in time-dependent domains
    Juan Calvo
    Matteo Novaga
    Giandomenico Orlandi
    Journal of Evolution Equations, 2017, 17 : 781 - 804