Interpolation formulas for functions of exponential type

被引:0
|
作者
Kofron J. [1 ]
Moravcova E. [2 ]
机构
[1] Faculty of Mathematics and Physics, Department of Numerical Mathematics, Charles University, 186 75, Praha 8
[2] AQUILA TS s.r.o., 561 51, Letohrad
关键词
Entire functions; Numerical interpolation; Optimal interpolatory rule with prescribed nodes; Paley-Wiener theorem; Remainder estimate;
D O I
10.1023/A:1013760511662
中图分类号
学科分类号
摘要
In the paper we present a derivative-free estimate of the remainder of an arbitrary interpolation rule on the class of entire functions which, moreover, belong to the space L2(-∞,+∞). The theory is based on the use of the Paley-Wiener theorem. The essential advantage of this method is the fact that the estimate of the remainder is formed by a product of two terms. The first term depends on the rule only while the second depends on the interpolated function only. The obtained estimate of the remainder of Lagrange's rule shows the efficiency of the method of estimate. The first term of the estimate is a starting point for the construction of the optimal rule; only the optimal rule with prescribed nodes of the interpolatory rule is investigated. An example illustrates the developed theory.
引用
收藏
页码:401 / 417
页数:16
相关论文
共 50 条