Local zeta functions, pseudodifferential operators and Sobolev-type spaces over non-Archimedean local fields

被引:2
|
作者
Zúñiga-Galindo W.A. [1 ]
机构
[1] Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Matemáticas, Unidad Querétaro, Libramiento Norponiente #2000, Fracc. Real de Juriquilla, Santiago de Querétaro, Qro
关键词
fundamental solutions; local zeta functions; non-Archimedean operator theory; pseudodifferential operators; Sobolev-type spaces;
D O I
10.1134/S2070046617040069
中图分类号
学科分类号
摘要
In this articlewe introduce a new type of local zeta functions and study some connections with pseudodifferential operators in the framework of non-Archimedean fields. The new local zeta functions are defined by integrating complex powers of norms of polynomials multiplied by infinitely pseudo-differentiable functions. In characteristic zero, the new local zeta functions admit meromorphic continuations to the whole complex plane, but they are not rational functions. The real parts of the possible poles have a description similar to the poles of Archimedean zeta functions. But they can be irrational real numbers while in the classical case are rational numbers. We also study, in arbitrary characteristic, certain connections between local zeta functions and the existence of fundamental solutions for pseudodifferential equations. © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:314 / 335
页数:21
相关论文
共 50 条