Blind Source Separation for Spatial Compositional Data

被引:0
|
作者
Klaus Nordhausen
Hannu Oja
Peter Filzmoser
Clemens Reimann
机构
[1] University of Turku,Department of Mathematics and Statistics
[2] Vienna University of Technology,Department of Statistics and Probability Theory
[3] Geological Survey of Norway,undefined
来源
Mathematical Geosciences | 2015年 / 47卷
关键词
Principal component analysis; Independent component analysis; Clr transformation; Ilr transformation; 62M10; 60G35; 92C55;
D O I
暂无
中图分类号
学科分类号
摘要
In regional geochemistry rock, sediment, soil, plant or water samples, collected in a certain region, are analyzed for concentrations of chemical elements. The observations are thus usually high dimensional, spatially dependent and of compositional nature. In this paper, a novel blind source separation approach for spatially dependent data is suggested. For the analysis, it is assumed that the multivariate observations are linear combinations or mixtures of latent components and that the spatial processes for these latent components are second order stationary and uncorrelated. In the present approach, the latent components are then recovered by simultaneously diagonalizing the covariance matrix and a local covariance (correlation) matrix. This method can be easily applied also in the context of compositional data after appropriate data transformations. The components obtained in this way are uncorrelated and easily interpretable, and can be used for dimension reduction and for visual presentation of different features of the data. To demonstrate the usefulness of the new method, the KOLA data are reanalyzed using the new procedure and the results are compared to the results coming from marginal principal component analysis and independent component analysis that ignore spatial dependence.
引用
收藏
页码:753 / 770
页数:17
相关论文
共 50 条
  • [1] Blind Source Separation for Spatial Compositional Data
    Nordhausen, Klaus
    Oja, Hannu
    Filzmoser, Peter
    Reimann, Clemens
    MATHEMATICAL GEOSCIENCES, 2015, 47 (07) : 753 - 770
  • [2] Blind Source Separation for Compositional Time Series
    Nordhausen, Klaus
    Fischer, Gregor
    Filzmoser, Peter
    MATHEMATICAL GEOSCIENCES, 2021, 53 (05) : 905 - 924
  • [3] Blind Source Separation for Compositional Time Series
    Klaus Nordhausen
    Gregor Fischer
    Peter Filzmoser
    Mathematical Geosciences, 2021, 53 : 905 - 924
  • [4] Spatial blind source separation
    Bachoc, Francois
    Genton, Marc G.
    Nordhausen, Klaus
    Ruiz-Gazen, Anne
    Virta, Joni
    BIOMETRIKA, 2020, 107 (03) : 627 - 646
  • [5] Spatial Blind Source Separation in the Presence of a Drift
    Muehlmann, Christoph
    Filzmoser, Peter
    Nordhausen, Klaus
    AUSTRIAN JOURNAL OF STATISTICS, 2024, 53 (02) : 48 - 68
  • [6] Visual Parameter Selection for Spatial Blind Source Separation
    Piccolotto, N.
    Boegl, M.
    Muehlmann, C.
    Nordhausen, K.
    Filzmoser, P.
    Miksch, S.
    COMPUTER GRAPHICS FORUM, 2022, 41 (03) : 157 - 168
  • [7] Study on the spatial separability of blind source separation technique
    Zhang, XH
    Zhang, AQ
    Kang, CY
    Xu, LZ
    PROCEEDINGS OF 2003 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS & SIGNAL PROCESSING, PROCEEDINGS, VOLS 1 AND 2, 2003, : 1390 - 1393
  • [8] Blind source separation using the spatial ambiguity functions
    Amin, MG
    Belouchrani, A
    PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1998, : 413 - 416
  • [9] Nonlinear blind source separation exploiting spatial nonstationarity
    Sipila, Mika
    Nordhausen, Klaus
    Taskinen, Sara
    INFORMATION SCIENCES, 2024, 665
  • [10] Local Difference Matrices for Spatial Blind Source Separation
    Muehlmann, Christoph
    Filzmoser, Peter
    Nordhausen, Klaus
    SELECTED STUDIES IN GEOPHYSICS, TECTONICS AND PETROLEUM GEOSCIENCES, CAJG-3 2020, 2024, : 63 - 65