Applications of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces

被引:0
|
作者
Fan Wang
Dachun Yang
Sibei Yang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
[2] Lanzhou University,School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems
来源
Results in Mathematics | 2020年 / 75卷
关键词
Ball quasi-Banach function space; Hardy space; -function; -function; atom; Calderón–Zygmund operator; pseudo-differential operator; Primary 42B30; Secondary 42B35; 42B25; 42B20; 47G30;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a ball quasi-Banach function space satisfying some minor assumptions. In this article, the authors establish the characterizations of HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}, the Hardy space associated with X, via the Littlewood–Paley g-functions and gλ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_\lambda ^*$$\end{document}-functions. Moreover, the authors obtain the boundedness of Calderón–Zygmund operators on HX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_X(\mathbb {R}^n)$$\end{document}. For the local Hardy-type space hX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_X(\mathbb {R}^n)$$\end{document} associated with X, the authors also obtain the boundedness of S1,00(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^0_{1,0}(\mathbb {R}^n)$$\end{document} pseudo-differential operators on hX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_X(\mathbb {R}^n)$$\end{document} via first establishing the atomic characterization of hX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_X(\mathbb {R}^n)$$\end{document}. Furthermore, the characterizations of hX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_X(\mathbb {R}^n)$$\end{document} by means of local molecules and local Littlewood–Paley functions are also given. The results obtained in this article have a wide range of generality and can be applied to the classical Hardy space, the weighted Hardy space, the Herz–Hardy space, the Lorentz–Hardy space, the Morrey–Hardy space, the variable Hardy space, the Orlicz-slice Hardy space and their local versions. Some special cases of these applications are even new and, particularly, in the case of the variable Hardy space, the gλ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_\lambda ^*$$\end{document}-function characterization obtained in this article improves the known results via widening the range of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Applications of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Wang, Fan
    Yang, Dachun
    Yang, Sibei
    RESULTS IN MATHEMATICS, 2020, 75 (01)
  • [2] Anisotropic Hardy spaces associated with ball quasi-Banach function spaces and their applications
    Wang, Zhiran
    Yan, Xianjie
    Yang, Dachun
    KYOTO JOURNAL OF MATHEMATICS, 2024, 64 (03) : 565 - 634
  • [3] Hardy spaces for ball quasi-Banach function spaces
    Sawano, Yoshihiro
    Ho, Kwok-Pun
    Yang, Dachun
    Yang, Sibei
    DISSERTATIONES MATHEMATICAE, 2017, (525) : 1 - 102
  • [4] Product local Hardy spaces associated with ball quasi-Banach function spaces
    Bao, Jieyuran
    Tan, Jian
    Zhao, Jiman
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2025, 16 (01)
  • [5] Fourier transform of Hardy spaces associated with ball quasi-Banach function spaces
    Huang, Long
    Chang, Der-Chen
    Yang, Dachun
    APPLICABLE ANALYSIS, 2022, 101 (11) : 3825 - 3840
  • [6] Product Hardy Spaces Meet Ball Quasi-Banach Function Spaces
    Tan, Jian
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (03)
  • [7] Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Fan Wang
    Dachun Yang
    Wen Yuan
    Journal of Fourier Analysis and Applications, 2023, 29
  • [8] Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2023, 29 (05)
  • [9] Product Hardy Spaces Meet Ball Quasi-Banach Function Spaces
    Jian Tan
    The Journal of Geometric Analysis, 2024, 34
  • [10] Bochner–Riesz Means on Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Jian Tan
    Linjing Zhang
    Mediterranean Journal of Mathematics, 2023, 20