Distinct r-tuples in integer partitions

被引:0
|
作者
Margaret Archibald
Aubrey Blecher
Arnold Knopfmacher
机构
[1] University of the Witwatersrand,The John Knopfmacher Centre for Applicable Analysis and Number Theory School of Mathematics
来源
The Ramanujan Journal | 2019年 / 50卷
关键词
Generating function; Integer partitions; -tuples; Primary: 05A16; 05A17; Secondary: 05A15;
D O I
暂无
中图分类号
学科分类号
摘要
We define Pr(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{r}(q)$$\end{document} to be the generating function which counts the total number of distinct (sequential) r-tuples in partitions of n and Qr(q,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_r(q,u)$$\end{document} to be the corresponding bivariate generating function where u tracks the number of distinct r-tuples. These statistics generalise the number of distinct parts in a partition. In the early part of this paper we develop the tools by finding these generating functions for small cases r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document} and r=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=3$$\end{document}. Then we use these methods to obtain Pr(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{r}(q)$$\end{document} and Qr(q,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_r(q,u)$$\end{document} in the case of general r-tuples. These formulae are used to find the average number of distinct r-tuples for fixed r, as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. Finally we show that as r→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\rightarrow \infty $$\end{document}, q-rPr(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{-r}P_{r}(q)$$\end{document} converges to an explicitly determined power series.
引用
收藏
页码:237 / 252
页数:15
相关论文
共 50 条
  • [1] Distinct r-tuples in integer partitions
    Archibald, Margaret
    Blecher, Aubrey
    Knopfmacher, Arnold
    RAMANUJAN JOURNAL, 2019, 50 (02): : 237 - 252
  • [2] Some new congruences for overcubic partitions with r-tuples
    Buragohain, Pujashree
    Saikia, Nipen
    ARABIAN JOURNAL OF MATHEMATICS, 2024, 13 (03) : 663 - 677
  • [3] Wandering r-tuples for unitary systems
    Guo, Xunxiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (02) : 722 - 728
  • [4] ALEXANDER r-TUPLES AND BIER COMPLEXES
    Jojic, Dusko
    Nekrasov, Ilya
    Panina, Gaiane
    Zivaljevic, Rade
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2018, 104 (118): : 1 - 22
  • [5] Commuting varieties of r-tuples over Lie algebras
    Ngo, Nham V.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (08) : 1400 - 1417
  • [6] The length of an s-increasing sequence of r-tuples
    Cowers, W. T.
    Long, J.
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (05): : 1 - 36
  • [7] The action of a few permutations on r-tuples is quickly transitive
    Friedman, J
    Joux, A
    Roichman, Y
    Stern, J
    Tillich, JP
    RANDOM STRUCTURES & ALGORITHMS, 1998, 12 (04) : 335 - 350
  • [8] THE DISTRIBUTION OF R-TUPLES OF SQUARE-FREE NUMBERS
    TSANG, KM
    MATHEMATIKA, 1985, 32 (64) : 265 - 275
  • [9] On nilpotent commuting varieties of r-tuples in the Witt algebra
    Yao, Yu-Feng
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (09) : 4042 - 4054
  • [10] On the distribution of r-tuples of squarefree numbers in short intervals
    Tolev, D. I.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2006, 2 (02) : 225 - 234