We define Pr(q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P_{r}(q)$$\end{document} to be the generating function which counts the total number of distinct (sequential) r-tuples in partitions of n and Qr(q,u)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_r(q,u)$$\end{document} to be the corresponding bivariate generating function where u tracks the number of distinct r-tuples. These statistics generalise the number of distinct parts in a partition. In the early part of this paper we develop the tools by finding these generating functions for small cases r=2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r=2$$\end{document} and r=3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r=3$$\end{document}. Then we use these methods to obtain Pr(q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P_{r}(q)$$\end{document} and Qr(q,u)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_r(q,u)$$\end{document} in the case of general r-tuples. These formulae are used to find the average number of distinct r-tuples for fixed r, as n→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\rightarrow \infty $$\end{document}. Finally we show that as r→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r\rightarrow \infty $$\end{document}, q-rPr(q)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q^{-r}P_{r}(q)$$\end{document} converges to an explicitly determined power series.
机构:
Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal, Private Bag 3, ZA-2050 Johannesburg, South Africa
Univ Witwatersrand, Number Theory Sch Math, Private Bag 3, ZA-2050 Johannesburg, South AfricaUniv Witwatersrand, John Knopfmacher Ctr Applicable Anal, Private Bag 3, ZA-2050 Johannesburg, South Africa
Archibald, Margaret
Blecher, Aubrey
论文数: 0引用数: 0
h-index: 0
机构:
Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal, Private Bag 3, ZA-2050 Johannesburg, South Africa
Univ Witwatersrand, Number Theory Sch Math, Private Bag 3, ZA-2050 Johannesburg, South AfricaUniv Witwatersrand, John Knopfmacher Ctr Applicable Anal, Private Bag 3, ZA-2050 Johannesburg, South Africa
Blecher, Aubrey
Knopfmacher, Arnold
论文数: 0引用数: 0
h-index: 0
机构:
Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal, Private Bag 3, ZA-2050 Johannesburg, South Africa
Univ Witwatersrand, Number Theory Sch Math, Private Bag 3, ZA-2050 Johannesburg, South AfricaUniv Witwatersrand, John Knopfmacher Ctr Applicable Anal, Private Bag 3, ZA-2050 Johannesburg, South Africa
机构:
Univ Banja Luka, Fac Sci, Republic Of Srpska, Bosnia & HercegUniv Banja Luka, Fac Sci, Republic Of Srpska, Bosnia & Herceg
Jojic, Dusko
Nekrasov, Ilya
论文数: 0引用数: 0
h-index: 0
机构:
St Petersburg State Univ, Chebyshev Lab, St Petersburg, RussiaUniv Banja Luka, Fac Sci, Republic Of Srpska, Bosnia & Herceg
Nekrasov, Ilya
Panina, Gaiane
论文数: 0引用数: 0
h-index: 0
机构:
St Petersburg State Univ, Math & Mech Dept, St Petersburg Dept, VA Steklov Inst Math,Russian Acad Sci, St Petersburg, RussiaUniv Banja Luka, Fac Sci, Republic Of Srpska, Bosnia & Herceg
Panina, Gaiane
Zivaljevic, Rade
论文数: 0引用数: 0
h-index: 0
机构:
Univ Belgrade, Serbian Acad Sci & Arts, Math Inst, Belgrade, SerbiaUniv Banja Luka, Fac Sci, Republic Of Srpska, Bosnia & Herceg
Zivaljevic, Rade
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD,
2018,
104
(118):
: 1
-
22
机构:
Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, EnglandCtr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
Cowers, W. T.
Long, J.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, EnglandCtr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England