We study the deformations of a holomorphic symplectic manifold X, not necessarily compact, over a formal ring. We always assume both X and the symplectic form Ω to be algebraic over
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{C}.$\end{document} We show (under some additional, but mild, assumptions on X) that the coarse deformation space of the pair
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\left\langle {X,\Omega } \right\rangle $\end{document} exists and is smooth, finite-dimensional and naturally embedded into H2(X). In particular, for an algebraic holomorphic symplectic manifold X which satisfies
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$H^i (\mathcal{O}_X ) = 0$
\end{document} for all i > 0, the coarse moduli of formal deformations is isomorphic to Spec
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{C}\left[\kern-0.15em\left[ {t_1 , \ldots ,t_n }
\right]\kern-0.15em\right],$
\end{document} where
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$t_1 , \ldots t_n $\end{document} are coordinates in H2(X).