The diversity of three-dimensional photonic crystals

被引:0
|
作者
Rose K. Cersonsky
James Antonaglia
Bradley D. Dice
Sharon C. Glotzer
机构
[1] University of Michigan,Macromolecular Science and Engineering Program
[2] University of Michigan,Department of Physics
[3] University of Michigan,Department of Chemical Engineering
[4] University of Michigan,Department of Materials Science and Engineering
[5] University of Michigan,Biointerfaces Institute
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Many butterflies, birds, beetles, and chameleons owe their spectacular colors to the microscopic patterns within their wings, feathers, or skin. When these patterns, or photonic crystals, result in the omnidirectional reflection of commensurate wavelengths of light, it is due to a complete photonic band gap (PBG). The number of natural crystal structures known to have a PBG is relatively small, and those within the even smaller subset of notoriety, including diamond and inverse opal, have proven difficult to synthesize. Here, we report more than 150,000 photonic band calculations for thousands of natural crystal templates from which we predict 351 photonic crystal templates – including nearly 300 previously-unreported structures – that can potentially be realized for a multitude of applications and length scales, including several in the visible range via colloidal self-assembly. With this large variety of 3D photonic crystals, we also revisit and discuss oft-used primary design heuristics for PBG materials.
引用
收藏
相关论文
共 50 条
  • [1] The diversity of three-dimensional photonic crystals
    Cersonsky, Rose K.
    Antonaglia, James
    Dice, Bradley D.
    Glotzer, Sharon C.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [2] Three-dimensional photonic crystals
    Meisel, DC
    Deubel, M
    Hermatschweiler, M
    Busch, K
    Koch, W
    von Freymann, G
    Blanco, A
    Enkrich, C
    Wegener, M
    FUNCTIONAL NANOMATERIALS FOR OPTOELECTRONICS AND OTHER APPLICATIONS, 2004, 99-100 : 55 - 64
  • [3] Resonant three-dimensional photonic crystals
    Ivchenko, E. L.
    Poddubnyi, A. N.
    PHYSICS OF THE SOLID STATE, 2006, 48 (03) : 581 - 588
  • [4] Three-dimensional function photonic crystals
    Zhang, Hai-Feng
    PHYSICA B-CONDENSED MATTER, 2017, 525 : 104 - 113
  • [5] Three-Dimensional Topological Photonic Crystals
    Liu, Jian-Wei
    Liu, Gui-Geng
    Zhang, Baile
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2024, 181 : 99 - 112
  • [6] Three-dimensional GaN photonic crystals
    Gajiev, G
    Golubev, VG
    Kurdyukov, DA
    Pevtsov, AB
    Selkin, AV
    Travnikov, VV
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2002, 231 (01): : R7 - R9
  • [7] Three-dimensional lithography of photonic crystals
    Blanco, A
    Busch, K
    Deubel, M
    Enkrich, C
    von Freymann, G
    Hermatschweiler, M
    Koch, W
    Linden, S
    Meisel, DC
    Ozin, GA
    Pereira, S
    Soukoulis, CM
    Tétreault, N
    Wegener, M
    ADVANCES IN SOLID STATE PHYSICS 44, 2004, 44 : 93 - 103
  • [8] Resonant three-dimensional photonic crystals
    E. L. Ivchenko
    A. N. Poddubnyĭ
    Physics of the Solid State, 2006, 48 : 581 - 588
  • [9] Microassembly of semiconductor three-dimensional photonic crystals
    Kanna Aoki
    Hideki T. Miyazaki
    Hideki Hirayama
    Kyoji Inoshita
    Toshihiko Baba
    Kazuaki Sakoda
    Norio Shinya
    Yoshinobu Aoyagi
    Nature Materials, 2003, 2 : 117 - 121
  • [10] Three-dimensional photonic crystals as a cage for light
    Koenderink, AF
    Johnson, PM
    López, JFG
    Vos, WL
    COMPTES RENDUS PHYSIQUE, 2002, 3 (01) : 67 - 77