Latent Semantic Kernels

被引:10
作者
Nello Cristianini
John Shawe-Taylor
Huma Lodhi
机构
[1] University of London,Department of Computer Science, Royal Holloway
来源
Journal of Intelligent Information Systems | 2002年 / 18卷
关键词
Kernel methods; latent semantic indexing; latent semantic kernels; Gram-Schmidt kernels; text categorization;
D O I
暂无
中图分类号
学科分类号
摘要
Kernel methods like support vector machines have successfully been used for text categorization. A standard choice of kernel function has been the inner product between the vector-space representation of two documents, in analogy with classical information retrieval (IR) approaches.
引用
收藏
页码:127 / 152
页数:25
相关论文
共 22 条
[1]  
Aizerman M.(1964)Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning Automation and Remote Control 25 821-837
[2]  
Braverman E.(1990)Indexing by Latent Semantic Analysis Journal of the American Society for Information Science 41 391-407
[3]  
Rozonoer L.(2002)Text Categorization with Support Vector Machines. How to Represent Texts in Input Space? Machine Learning 46 423-444
[4]  
Deerwester S.(1975)A Vector Space Model for Information Retrieval Journal of the American Society for Information Science 18 613-620
[5]  
Dumais S.T.(2001)SV Estimating the Support of a Higher Dimensional Distribution, Neural Computation Neural Information Processing Systems 13 1443-1471
[6]  
Furnas G.W.(1998)Structural Risk Minimization over Data-Dependent Hierarchies IEEE Transactions on Information Theory 44 1926-1940
[7]  
Landauer T.K.(undefined)undefined undefined undefined undefined-undefined
[8]  
Harshman R.A.(undefined)undefined undefined undefined undefined-undefined
[9]  
Leopold E.(undefined)undefined undefined undefined undefined-undefined
[10]  
Kinderman J.(undefined)undefined undefined undefined undefined-undefined