A new four-dimensional ab initio potential energy surface and predicted infrared spectra for the He–CS2 complex

被引:0
|
作者
Jing Shang
Ting Yuan
Hua Zhu
机构
[1] Sichuan University,School of Chemistry
[2] Sichuan University,State Key Laboratory of Biotherapy
来源
关键词
Potential energy surface; Infrared spectra; He–CS; Ab initio;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new four-dimensional ab initio potential energy surface for He–CS2 that is constructed at the coupled cluster and doubles with noniterative inclusion of connected triple [CCSD(T)] level with augmented correlation-consistent quadruplet-zeta (aug-cc-pVQZ) basis set plus midpoint bond functions. The Q1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{1}$$\end{document} and Q3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{3}$$\end{document} normal modes for the ν1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{1}$$\end{document} symmetric stretching vibration and ν3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{3}$$\end{document} antisymmetric stretching vibration of CS2 are involved in the construction of the He–CS2 potential. Two vibrationally averaged potentials with CS2 at the vibrational ground and the ν1+ν3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{1} \text{ + }\nu_{3}$$\end{document} excited states are generated from the integration of the four-dimensional potential over the Q1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{1}$$\end{document} and Q3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{3}$$\end{document} coordinates. Each potential is found to have a T-shaped global minimum. The radial discrete variable representation/angular finite basis representation method is employed to calculate the rovibrational states without separating the inter- and intramolecular vibrations. The calculated shift of band origin (0.2270 cm−1) agrees well with the experimental value (0.2278 cm−1). The frequencies and line intensities of the rovibrational transitions in the ν1+ν3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu_{1} \text{ + }\nu_{3}$$\end{document} region of CS2 for the vdW vibrational ground state are also in good agreement with the observed infrared spectra.
引用
收藏
相关论文
共 50 条
  • [1] A new four-dimensional ab initio potential energy surface and predicted infrared spectra for the He-CS2 complex
    Shang, Jing
    Yuan, Ting
    Zhu, Hua
    THEORETICAL CHEMISTRY ACCOUNTS, 2015, 135 (01) : 1 - 8
  • [2] A new four-dimensional ab initio potential energy surface and predicted infrared spectra for the Ne-CS2 complex
    Qin, Miao
    Shang, Jing
    Hong, Qi
    Zhu, Hua
    MOLECULAR PHYSICS, 2017, 115 (03) : 379 - 385
  • [3] A new ab initio potential energy surface and infrared spectra for the He–CS2 complex
    Ting Yuan
    Hua Zhu
    Theoretical Chemistry Accounts, 2014, 133
  • [4] A New Four-Dimensional Potential Energy Surface and Predicted Infrared Spectra for the Kr-CS2 Complex
    Hong Qi
    Qin Miao
    Zhu Hua
    ACTA CHIMICA SINICA, 2018, 76 (02) : 138 - 142
  • [5] A new ab initio potential energy surface and infrared spectra for the He-CS2 complex
    Yuan, Ting
    Zhu, Hua
    THEORETICAL CHEMISTRY ACCOUNTS, 2014, 133 (10)
  • [6] A three-dimensional ab initio potential energy surface and predicted infrared spectra for the He-N2O complex
    Zhou, Y
    Xie, DQ
    Zhang, DH
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (14):
  • [7] A new ab initio potential energy surface and infrared spectra for the Ar-CS2 complex
    Yuan, Ting
    Sun, Xueli
    Hu, Yi
    Zhu, Hua
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (10):
  • [8] A new ab initio potential energy surface and infrared spectra for the Ne-CS2 complex
    Hu, Yun
    Yuan, Ting
    Zhu, Hua
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2015, 1056 : 47 - 51
  • [9] A new four-dimensional ab initio potential energy surface and rovibrational spectra for the C2H2-Ar complex
    Han, Chaoying
    Pei, Xin
    Zhu, Hua
    Fan, Hongjun
    MOLECULAR PHYSICS, 2020, 118 (14)
  • [10] Near-infrared spectra and rovibrational dynamics on a four-dimensional ab initio potential energy surface of (HBr)2
    Castillo-Chará, J
    McIntosh, AL
    Wang, Z
    Lucchese, RR
    Bevan, JW
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (22): : 10426 - 10441