Extreme Value Laws in Dynamical Systems for Non-smooth Observations

被引:0
|
作者
Ana Cristina Moreira Freitas
Jorge Milhazes Freitas
Mike Todd
机构
[1] Universidade do Porto,Centro de Matemática & Faculdade de Economia
[2] Universidade do Porto,Centro de Matemática
[3] Boston University,Department of Mathematics and Statistics
来源
关键词
Return time statistics; Extreme Value Theory; Non-uniform hyperbolicity; Stationary stochastic processes;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the equivalence between the existence of a non-trivial hitting time statistics law and Extreme Value Laws in the case of dynamical systems with measures which are not absolutely continuous with respect to Lebesgue. This is a counterpart to the result of the authors in the absolutely continuous case. Moreover, we prove an equivalent result for returns to dynamically defined cylinders. This allows us to show that we have Extreme Value Laws for various dynamical systems with equilibrium states with good mixing properties. In order to achieve these goals we tailor our observables to the form of the measure at hand.
引用
收藏
页码:108 / 126
页数:18
相关论文
共 50 条
  • [1] Extreme Value Laws in Dynamical Systems for Non-smooth Observations
    Moreira Freitas, Ana Cristina
    Freitas, Jorge Milhazes
    Todd, Mike
    JOURNAL OF STATISTICAL PHYSICS, 2011, 142 (01) : 108 - 126
  • [2] Non-smooth dynamical systems
    Leine, Remco I.
    van de Wouw, Nathan
    Lecture Notes in Applied and Computational Mechanics, 2008, 36 : 59 - 77
  • [3] Concepts for non-smooth dynamical systems
    Küpper, T
    MATHEMATICS AND THE 21ST CENTURY, 2001, : 123 - 140
  • [4] Synchronization and Non-Smooth Dynamical Systems
    Jaume Llibre
    Paulo R. da Silva
    Marco A. Teixeira
    Journal of Dynamics and Differential Equations, 2012, 24 : 1 - 12
  • [5] Synchronization and Non-Smooth Dynamical Systems
    Llibre, Jaume
    da Silva, Paulo R.
    Teixeira, Marco A.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2012, 24 (01) : 1 - 12
  • [6] On a class of non-smooth dynamical systems: A sufficient condition for smooth versus non-smooth solutions
    Danca, M. -F.
    REGULAR & CHAOTIC DYNAMICS, 2007, 12 (01): : 1 - 11
  • [7] On a class of non-smooth dynamical systems: a sufficient condition for smooth versus non-smooth solutions
    M. -F. Danca
    Regular and Chaotic Dynamics, 2007, 12 : 1 - 11
  • [8] Invariant cones for non-smooth dynamical systems
    Kuepper, Tassilo
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (04) : 1396 - 1408
  • [9] On the control of non-smooth complementarity dynamical systems
    Brogliato, B
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 359 (1789): : 2369 - 2383
  • [10] Bifurcation phenomena in non-smooth dynamical systems
    Leine, R. I.
    van Campen, D. H.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2006, 25 (04) : 595 - 616