A large open access dataset of brain metastasis 3D segmentations on MRI with clinical and imaging information

被引:0
|
作者
Divya Ramakrishnan
Leon Jekel
Saahil Chadha
Anastasia Janas
Harrison Moy
Nazanin Maleki
Matthew Sala
Manpreet Kaur
Gabriel Cassinelli Petersen
Sara Merkaj
Marc von Reppert
Ujjwal Baid
Spyridon Bakas
Claudia Kirsch
Melissa Davis
Khaled Bousabarah
Wolfgang Holler
MingDe Lin
Malte Westerhoff
Sanjay Aneja
Fatima Memon
Mariam S. Aboian
机构
[1] Yale School of Medicine,Division of Computational Pathology, Department of Pathology & Laboratory Medicine
[2] Department of Radiology and Biomedical Imaging,Department of Radiology and Department of Pathology & Laboratory Medicine, Perelman School of Medicine
[3] University of Essen School of Medicine,School of Clinical Dentistry
[4] Charité University School of Medicine,Diagnostic, Molecular and Interventional Radiology, Biomedical Engineering Imaging
[5] Wesleyan University,Department of Therapeutic Radiology
[6] Tulane University School of Medicine,Center for Outcomes Research and Evaluation (CORE)
[7] Ludwig Maximilian University School of Medicine,undefined
[8] University of Göttingen School of Medicine,undefined
[9] Ulm University School of Medicine,undefined
[10] University of Leipzig School of Medicine,undefined
[11] Indiana University School of Medicine,undefined
[12] University of Pennsylvania,undefined
[13] University of Sheffield,undefined
[14] Mount Sinai Hospital,undefined
[15] Visage Imaging,undefined
[16] GmbH,undefined
[17] Visage Imaging,undefined
[18] Inc.,undefined
[19] Yale School of Medicine,undefined
[20] Yale School of Medicine,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Resection and whole brain radiotherapy (WBRT) are standard treatments for brain metastases (BM) but are associated with cognitive side effects. Stereotactic radiosurgery (SRS) uses a targeted approach with less side effects than WBRT. SRS requires precise identification and delineation of BM. While artificial intelligence (AI) algorithms have been developed for this, their clinical adoption is limited due to poor model performance in the clinical setting. The limitations of algorithms are often due to the quality of datasets used for training the AI network. The purpose of this study was to create a large, heterogenous, annotated BM dataset for training and validation of AI models. We present a BM dataset of 200 patients with pretreatment T1, T1 post-contrast, T2, and FLAIR MR images. The dataset includes contrast-enhancing and necrotic 3D segmentations on T1 post-contrast and peritumoral edema 3D segmentations on FLAIR. Our dataset contains 975 contrast-enhancing lesions, many of which are sub centimeter, along with clinical and imaging information. We used a streamlined approach to database-building through a PACS-integrated segmentation workflow.
引用
收藏
相关论文
共 50 条
  • [1] A large open access dataset of brain metastasis 3D segmentations on MRI with clinical and imaging information
    Ramakrishnan, Divya
    Jekel, Leon
    Chadha, Saahil
    Janas, Anastasia
    Moy, Harrison
    Maleki, Nazanin
    Sala, Matthew
    Kaur, Manpreet
    Petersen, Gabriel Cassinelli
    Merkaj, Sara
    von Reppert, Marc
    Baid, Ujjwal
    Bakas, Spyridon
    Kirsch, Claudia
    Davis, Melissa
    Bousabarah, Khaled
    Holler, Wolfgang
    Lin, MingDe
    Westerhoff, Malte
    Aneja, Sanjay
    Memon, Fatima
    Aboian, Mariam S.
    SCIENTIFIC DATA, 2024, 11 (01)
  • [2] A large, open source dataset of stroke anatomical brain images and manual lesion segmentations
    Sook-Lei Liew
    Julia M. Anglin
    Nick W. Banks
    Matt Sondag
    Kaori L. Ito
    Hosung Kim
    Jennifer Chan
    Joyce Ito
    Connie Jung
    Nima Khoshab
    Stephanie Lefebvre
    William Nakamura
    David Saldana
    Allie Schmiesing
    Cathy Tran
    Danny Vo
    Tyler Ard
    Panthea Heydari
    Bokkyu Kim
    Lisa Aziz-Zadeh
    Steven C. Cramer
    Jingchun Liu
    Surjo Soekadar
    Jan-Egil Nordvik
    Lars T. Westlye
    Junping Wang
    Carolee Winstein
    Chunshui Yu
    Lei Ai
    Bonhwang Koo
    R. Cameron Craddock
    Michael Milham
    Matthew Lakich
    Amy Pienta
    Alison Stroud
    Scientific Data, 5
  • [3] A large, open source dataset of stroke anatomical brain images and manual lesion segmentations
    Liew, Sook-Lei
    Anglin, Julia M.
    Banks, Nick W.
    Sondag, Matt
    Ito, Kaori L.
    Kim, Hosung
    Chan, Jennifer
    Ito, Joyce
    Jung, Connie
    Khoshab, Nima
    Lefebvre, Stephanie
    Nakamura, William
    Saldana, David
    Schmiesing, Allie
    Tran, Cathy
    Vo, Danny
    Ard, Tyler
    Heydari, Panthea
    Kim, Bokkyu
    Aziz-Zadeh, Lisa
    Cramer, Steven C.
    Liu, Jingchun
    Soekadar, Surjo
    Nordvik, Jan-Egil
    Westlye, Lars T.
    Wang, Junping
    Winstein, Carolee
    Yu, Chunshui
    Ai, Lei
    Koo, Bonhwang
    Craddock, R. Cameron
    Milham, Michael
    Lakich, Matthew
    Pienta, Amy
    Stroud, Alison
    SCIENTIFIC DATA, 2018, 5
  • [4] LEVERAGING 3D INFORMATION IN UNSUPERVISED BRAIN MRI SEGMENTATION
    Lambert, Benjamin
    Louis, Maxime
    Doyle, Senan
    Forbes, Florence
    Dojat, Michel
    Tucholka, Alan
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 187 - 190
  • [5] A Fast Method for Whole Liver- and Colorectal Liver Metastasis Segmentations from MRI Using 3D FCNN Networks
    Kamkova, Yuliia
    Pelanis, Egidijus
    Bjornerud, Atle
    Edwin, Bjorn
    Elle, Ole Jakob
    Kumar, Rahul Prasanna
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [6] Comparison study of clinical 3D MRI brain segmentation evaluation
    Song, T
    Angelini, ED
    Mensh, BD
    Laine, A
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 1671 - 1674
  • [7] Multimodal MRI Brain Tumor Segmentation using 3D and 3D/2D Methods: A Study on the MICCAI BRATS Dataset
    Gtifa, Wafa
    Khoja, Intissar
    Sakly, Anis
    2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND EMERGENT TECHNOLOGIES, ICASET 2024, 2024,
  • [8] AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation
    Coupe, Pierrick
    Mansencal, Boris
    Clement, Michael
    Giraud, Remi
    de Senneville, Baudouin Denis
    Ta, Vinh-Thong
    Lepetit, Vincent
    Manjon, Jose V.
    NEUROIMAGE, 2020, 219
  • [9] A large open access dataset of transillumination imaging the toward realization of optical computed tomography
    Van, To Ni Phan
    Huynh, Hoang Nhut
    Nguyen, Ngoc An Dang
    Tran, Trung Nghia
    Shimizu, Koichi
    SCIENTIFIC DATA, 2025, 12 (01)
  • [10] An Automated Brain Metastasis Detection and Segmentation System from MRI with a Large Multi Institutional Dataset
    Yoo, Y.
    Gibson, E.
    Zhao, G.
    Sandu, A.
    Re, T.
    Das, J.
    Hesheng, W.
    Kim, M. M.
    Shen, C.
    Lee, Y. Z.
    Kondziolka, D.
    Ibrahim, M.
    Lian, J.
    Jain, R.
    Zhu, T.
    Parmar, H.
    Comaniciu, D.
    Baiter, J.
    Cao, Y.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : S88 - S89