Let p be a prime number and f a positive integer with f < p. In this paper, we determine the structure of simple Breuil modules of type ⊕i=1nωfki\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \oplus _{i = 1}^n\omega _f^{{k_i}}$$\end{document} corresponding to n-dimensional irreducible representations of GQp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${G_{{{\bf{Q}}_p}}}$$\end{document}. We also describe the extensions of those simple Breuil modules if they correspond to mod p reductions of strongly divisible modules that correspond to Galois stable lattices in potentially semistable representations of GQp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${G_{{{\bf{Q}}_p}}}$$\end{document} with Hodge-Tate weights {0, 1, …, n − 1} and Galois type ⊕i=1nω˜fki\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \oplus _{i = 1}^n\widetilde\omega _f^{{k_i}}$$\end{document}.
机构:
Ulsan Natl Inst Sci & Technol, Dept Math Sci, Unist Gil 50, Ulsan 44919, South KoreaUlsan Natl Inst Sci & Technol, Dept Math Sci, Unist Gil 50, Ulsan 44919, South Korea