Blow-Up Rate Estimates and Liouville Type Theorems for a Semilinear Heat Equation with Weighted Source

被引:0
|
作者
Quoc Hung Phan
机构
[1] Duy Tan University,Institute of Research and Development
关键词
Semilinear parabolic equation; Liouville-type theorem ; Blow-up; Primary 35B53; 35B44; Secondary 35K57; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Liouville-type theorem for the semilinear parabolic equation ut-Δu=|x|aup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t-\Delta u =|x|^a u^p$$\end{document} with p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document} and a∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in {\mathbb R}$$\end{document}. Relying on the recent result of Quittner (Math Ann, doi:10.1007/s00208-015-1219-7, 2015), we establish the optimal Liouville-type theorem in dimension N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=2$$\end{document}, in the class of nonnegative bounded solutions. We also provide a partial result in dimension N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}. As applications of Liouville-type theorems, we derive the blow-up rate estimates for the corresponding Cauchy problem.
引用
收藏
页码:1131 / 1144
页数:13
相关论文
共 50 条
  • [1] Blow-Up Rate Estimates and Liouville Type Theorems for a Semilinear Heat Equation with Weighted Source
    Quoc Hung Phan
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2017, 29 (03) : 1131 - 1144
  • [2] ON BLOW-UP AND DEGENERACY FOR THE SEMILINEAR HEAT-EQUATION WITH SOURCE
    GALAKTIONOV, VA
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 115 : 19 - 24
  • [3] Upper and lower blow-up rate estimates of a semilinear heat equation with a nonlinear boundary condition
    Rasheed, Maan A.
    Chlebik, Miroslav
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (02) : 163 - 175
  • [4] Type II blow-up for a semilinear heat equation with potential
    Jiang, Gui-Chun
    Wang, Ruo-Yi
    Wang, Yu-Xuan
    Zheng, Gao-Feng
    MONATSHEFTE FUR MATHEMATIK, 2021, 195 (04): : 659 - 673
  • [5] Type II blow-up for a semilinear heat equation with potential
    Gui-Chun Jiang
    Ruo-Yi Wang
    Yu-Xuan Wang
    Gao-Feng Zheng
    Monatshefte für Mathematik, 2021, 195 : 659 - 673
  • [6] Blow-up theorems of Fujita type for a semilinear parabolic equation with a gradient term
    Na, Yang
    Zhou, Mingjun
    Zhou, Xu
    Gai, Guanming
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [7] Blow-up theorems of Fujita type for a semilinear parabolic equation with a gradient term
    Yang Na
    Mingjun Zhou
    Xu Zhou
    Guanming Gai
    Advances in Difference Equations, 2018
  • [8] Blow-up rate estimates for semilinear parabolic systems
    Wang, MX
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 170 (02) : 317 - 324
  • [9] Blow-up of nonnegative solutions of an abstract semilinear heat equation with convex source
    Daniel Lenz
    Marcel Schmidt
    Ian Zimmermann
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [10] BLOW-UP FOR DISCRETIZATION OF A LOCALIZED SEMILINEAR HEAT EQUATION
    Boni, Theodore K.
    Nachid, Halima
    Diabate, Nabongo
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (02): : 385 - 406