Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing

被引:0
|
作者
Poria Pirozmand
Ali Asghar Rahmani Hosseinabadi
Maedeh Farrokhzad
Mehdi Sadeghilalimi
Seyedsaeid Mirkamali
Adam Slowik
机构
[1] Dalian Neusoft University of Information,School of Computer and software
[2] University of Regina,Department of Computer Science
[3] University of Science and Technology of Mazandaran,Department of Computer Science
[4] Payame Noor University (PNU),Department of Computer Engineering and IT
[5] Koszalin University of Technology,Department of Electronics & Computer Science
来源
关键词
Cloud computing; Genetic algorithm; Scheduling duration; Task; Resource; Energy consumption;
D O I
暂无
中图分类号
学科分类号
摘要
The cloud computing systems are sorts of shared collateral structure which has been in demand from its inception. In these systems, clients are able to access existing services based on their needs and without knowing where the service is located and how it is delivered, and only pay for the service used. Like other systems, there are challenges in the cloud computing system. Because of a wide array of clients and the variety of services available in this system, it can be said that the issue of scheduling and, of course, energy consumption is essential challenge of this system. Therefore, it should be properly provided to users, which minimizes both the cost of the provider and consumer and the energy consumption, and this requires the use of an optimal scheduling algorithm. In this paper, we present a two-step hybrid method for scheduling tasks aware of energy and time called Genetic Algorithm and Energy-Conscious Scheduling Heuristic based on the Genetic Algorithm. The first step involves prioritizing tasks, and the second step consists of assigning tasks to the processor. We prioritized tasks and generated primary chromosomes, and used the Energy-Conscious Scheduling Heuristic model, which is an energy-conscious model, to assign tasks to the processor. As the simulation results show, these results demonstrate that the proposed algorithm has been able to outperform other methods.
引用
收藏
页码:13075 / 13088
页数:13
相关论文
共 50 条
  • [1] Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing
    Pirozmand, Poria
    Hosseinabadi, Ali Asghar Rahmani
    Farrokhzad, Maedeh
    Sadeghilalimi, Mehdi
    Mirkamali, Seyedsaeid
    Slowik, Adam
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (19): : 13075 - 13088
  • [2] Correction to: Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing
    Poria Pirozmand
    Ali Asghar Rahmani Hosseinabadi
    Maedeh Farrokhzad
    Mehdi Sadeghilalimi
    Seyedsaeid Mirkamali
    Adam Slowik
    Neural Computing and Applications, 2022, 34 : 2497 - 2497
  • [3] Task scheduling based on multi-objective genetic algorithm in cloud computing
    Xu, Zhenzhen
    Xu, Xiujuan
    Zhao, Xiaowei
    Journal of Information and Computational Science, 2015, 12 (04): : 1429 - 1438
  • [4] Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing (vol 31, pg 13075, 2021)
    Pirozmand, Poria
    Hosseinabadi, Ali Asghar Rahmani
    Farrokhzad, Maedeh
    Sadeghilalimi, Mehdi
    Mirkamali, Seyedsaeid
    Slowik, Adam
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (03): : 2497 - 2497
  • [5] Multiprocessor task scheduling using multi-objective hybrid genetic Algorithm in Fog-cloud computing
    Agarwal, Gaurav
    Gupta, Sachi
    Ahuja, Rakesh
    Rai, Atul Kumar
    KNOWLEDGE-BASED SYSTEMS, 2023, 272
  • [6] An EDA-GA Hybrid Algorithm for Multi-Objective Task Scheduling in Cloud Computing
    Pang, Shanchen
    Li, Wenhao
    He, Hua
    Shan, Zhiguang
    Wang, Xun
    IEEE ACCESS, 2019, 7 : 146379 - 146389
  • [7] Multi-objective task scheduling in cloud computing
    Malti, Arslan Nedhir
    Hakem, Mourad
    Benmammar, Badr
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (25):
  • [8] Multi-objective Task Scheduling Optimization in Cloud Computing based on Genetic Algorithm and Differential Evolution Algorithm
    Li, Yuqing
    Wang, Shichuan
    Hong, Xin
    Li, Yongzhi
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 4489 - 4494
  • [9] Solving Task Scheduling Problem in Mobile Cloud Computing Using the Hybrid Multi-Objective Harris Hawks Optimization Algorithm
    Saemi, Behzad
    Hosseinabadi, Ali Asghar Rahmani
    Khodadadi, Azadeh
    Mirkamali, Seyedsaeid
    Abraham, Ajith
    IEEE ACCESS, 2023, 11 : 125033 - 125054
  • [10] Multi-objective task scheduling in cloud computing environment by hybridized bat algorithm
    Bezdan, Timea
    Zivkovic, Miodrag
    Bacanin, Nebojsa
    Strumberger, Ivana
    Tuba, Eva
    Tuba, Milan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (01) : 411 - 423