Existence of solutions for some quasilinear parabolic systems in Orlicz spaces

被引:0
|
作者
Elhoussine Azroul
Farah Balaadich
机构
[1] Faculty of Sciences Dhar El Mehraz,Department of Mathematics
关键词
Quasilinear parabolic systems; Orlicz spaces; Young measures; 35K59; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we prove an existence theorem for quasilinear parabolic problems of the form ∂u∂t-div(σ(x,t,Du)+Φ(x,t,u))=finQ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{\partial u}{\partial t}-\text {div}\big (\sigma (x,t,Du)+\varPhi (x,t,u)\big )=f\quad \text {in}\;Q, \end{aligned}$$\end{document}where f belongs to W-1,xEM¯(Q;Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{-1,x}E_{\overline{M}}(Q;\mathbb {R}^m)$$\end{document}. The function σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} and the lower term Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi$$\end{document} satisfy some conditions which will be used to prove the needed result through the theory of Young measures.
引用
收藏
页码:1327 / 1342
页数:15
相关论文
共 50 条
  • [1] Existence of solutions for some quasilinear parabolic systems in Orlicz spaces
    Azroul, Elhoussine
    Balaadich, Farah
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02): : 1327 - 1342
  • [2] Existence and Uniqueness Results for Quasilinear Parabolic Systems in Orlicz Spaces
    Balaadich, Farah
    Azroul, Elhoussine
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (03) : 407 - 421
  • [3] Existence and Uniqueness Results for Quasilinear Parabolic Systems in Orlicz Spaces
    Farah Balaadich
    Elhoussine Azroul
    Journal of Dynamical and Control Systems, 2020, 26 : 407 - 421
  • [4] Existence of weak solutions for quasilinear elliptic systems in Orlicz spaces
    Azroul, Elhoussine
    Balaadich, Farah
    APPLICABLE ANALYSIS, 2019,
  • [5] On quasilinear parabolic equations in the Orlicz spaces
    Fang, Fei
    Ji, Chao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 307 - 318
  • [6] Existence and multiplicity of solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces
    Wang, Liben
    Zhang, Xingyong
    Fang, Hui
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07): : 3792 - 3814
  • [7] Existence and Uniqueness Solutions for Some Strongly Quasilinear Parabolic Problems in Anisotropic Sobolev Spaces
    Hajji, Youssef
    Hjiaj, Hassane
    RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [8] Existence of ground state solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces
    Wang, Liben
    Zhang, Xingyong
    Fang, Hui
    BOUNDARY VALUE PROBLEMS, 2017,
  • [9] Existence of ground state solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces
    Liben Wang
    Xingyong Zhang
    Hui Fang
    Boundary Value Problems, 2017
  • [10] Existence and Uniqueness of Weak Solutions for Quasilinear Parabolic Systems
    Yang Shixin(Dept.Math Xiamen Univ
    数学研究与评论, 1993, (04) : 537 - 538