Artificial boundary conditions to compute correctors in linear elasticity

被引:0
|
作者
Bonnaillie-Noël V. [1 ,2 ,3 ,4 ]
Brancherie D. [4 ,5 ]
Dambrine M. [4 ,6 ]
Vial G. [7 ,8 ,9 ]
机构
[1] Institut de Recherche Mathematique de Rennes, 35042 Rennes Cedex, ave. du General Leclerc, 263
[2] ENS Cachan Bretagne, 35170 Bruz, ave. Robert Schuman
[3] Universite de Rennes 1, 35065 Rennes Cedex, rue du Thabor, 2
[4] Centre National de la Recherche Scientifique, 75794 Paris Cedex 16, rue Michel-Ange
[5] Roberval, Universite de Technologie de Compiegne
[6] LMA, Universite de Pau et des Pays de l'Adour, 64012 Pau Cedex, ave. de l'Universite
[7] Centre National de la Rrecherche Scientifique, 75794 Paris Cedex 16, rue Michel-Ange
[8] Institut Camile Jordan, 69622 Villeurbanne, Boulevard du 11 Novembre 1918
[9] Ecole Centrale de Lyon, 69134 Ecully Cedex, ave. Guy de Collongue
关键词
linear elasticity equations; transparent boundary conditions;
D O I
10.1134/S199542391202005X
中图分类号
学科分类号
摘要
We present the derivation of a transparent boundary condition of order two to solve the equations of linear elasticity in a half plane. The resolution of the boundary value problem leads to a noncoercive variational formulation. We also present some numerical examples. © 2012 Pleiades Publishing, Ltd.
引用
收藏
页码:129 / 135
页数:6
相关论文
共 50 条
  • [1] ARTIFICIAL CONDITIONS FOR THE LINEAR ELASTICITY EQUATIONS
    Bonnaillie-Noel, Virginie
    Dambrine, Marc
    Herau, Frederic
    Vial, Gregory
    MATHEMATICS OF COMPUTATION, 2015, 84 (294) : 1599 - 1632
  • [2] Exact artificial boundary conditions for continuum and discrete elasticity
    Lee, Sunmi
    Caflisch, Russel E.
    Lee, Young-Ju
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (05) : 1749 - 1775
  • [3] Multiscale Finite Elements for Linear Elasticity: Oscillatory Boundary Conditions
    Buck, Marco
    Iliev, Oleg
    Andrae, Heiko
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 237 - 245
  • [4] On the compatibility equations of nonlinear and linear elasticity in the presence of boundary conditions
    Arzhang Angoshtari
    Arash Yavari
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 3627 - 3644
  • [5] Heat kernel for the elliptic system of linear elasticity with boundary conditions
    Taylor, Justin
    Kim, Seick
    Brown, Russell
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (07) : 2485 - 2519
  • [6] On the compatibility equations of nonlinear and linear elasticity in the presence of boundary conditions
    Angoshtari, Arzhang
    Yavari, Arash
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3627 - 3644
  • [7] Spectral asymptotics for linear elasticity: the case of mixed boundary conditions
    Capoferri, Matteo
    Mann, Isabel
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [8] Solution of a Problem Linear Plane Elasticity with Mixed Boundary Conditions by the Method of Boundary Integrals
    Hussein, Nahed S.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [9] Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions
    Herzog, Roland
    Meyer, Christian
    Wachsmuth, Gerd
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (02) : 802 - 813
  • [10] Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions
    Martins, JAC
    Guimaraes, J
    Faria, LO
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1995, 117 (04): : 445 - 451