Sharp bounds for the difference between the arithmetic and geometric means

被引:0
|
作者
J. M. Aldaz
机构
[1] Universidad Autónoma de Madrid,Departamento de Matemáticas
来源
Archiv der Mathematik | 2012年 / 99卷
关键词
26D15; Variance; Arithmetic-geometric inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We present sharp bounds for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum_{i=1}^n \alpha_i x_i -\prod_{i=1}^n x_i^{\alpha_i} }$$\end{document} in terms of the variance of the vector \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(x_1^{1/2},\dots,x_n^{1/2})}$$\end{document}.
引用
收藏
页码:393 / 399
页数:6
相关论文
共 50 条
  • [1] Sharp bounds for the difference between the arithmetic and geometric means
    Aldaz, J. M.
    ARCHIV DER MATHEMATIK, 2012, 99 (04) : 393 - 399
  • [2] EXACT UPPER AND LOWER BOUNDS ON THE DIFFERENCE BETWEEN THE ARITHMETIC AND GEOMETRIC MEANS
    Pinelis, Iosif
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 92 (01) : 149 - 158
  • [3] SHARP BOUNDS FOR NEUMAN MEANS IN TERMS OF GEOMETRIC, ARITHMETIC AND QUADRATIC MEANS
    Guo, Zhi-Jun
    Zhang, Yan
    Chu, Yu-Ming
    Song, Ying-Qing
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02): : 301 - 312
  • [4] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Zhen-Hang Yang
    Jing-Feng Tian
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [5] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Yang, Zhen-Hang
    Tian, Jing-Feng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [6] Sharp bounds for Sandor mean in terms of arithmetic, geometric and harmonic means
    Qian, Wei-Mao
    Chu, Yu-Ming
    Zhang, Xiao-Hui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [7] Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means
    Wei-Mao Qian
    Yu-Ming Chu
    Xiao-Hui Zhang
    Journal of Inequalities and Applications, 2015
  • [8] A Sharp Double Inequality between Seiffert, Arithmetic, and Geometric Means
    Gong, Wei-Ming
    Song, Ying-Qing
    Wang, Miao-Kun
    Chu, Yu-Ming
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [9] Sharp bounds for the arithmetic-geometric mean
    Yang, Zhen-Hang
    Song, Ying-Qing
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [10] Sharp bounds for the arithmetic-geometric mean
    Zhen-Hang Yang
    Ying-Qing Song
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2014