Spectral analysis on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm SL}(2, \mathbb{R})}$$\end{document}

被引:0
|
作者
Sanjoy Pusti
Rudra P. Sarkar
机构
[1] Indian Institute of Science,Department of Mathematics
[2] Indian Statistical Institute,Stat–Math Unit
关键词
Primary 43A85; Secondary 22E30;
D O I
10.1007/s00229-011-0525-y
中图分类号
学科分类号
摘要
Let G be the group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm SL}(2, \mathbb{R})}$$\end{document}. For this group we prove a version of Schwartz’s theorem on spectral analysis for the group G. We find the sharp range of Lebesgue spaces Lp(G) for which a smooth function is not mean periodic unless it is a cusp form. Failure of the Schwartz-like theorem is also proved when C∞(G) is replaced by Lp(G) with suitable p. We show that the last result is linked with the failure of the Wiener-tauberian theorem for G.
引用
收藏
页码:13 / 28
页数:15
相关论文
共 50 条