Infinitely many solutions for an elliptic problem involving critical Sobolev and Hardy–Sobolev exponents

被引:3
|
作者
Shusen Yan
Jianfu Yang
机构
[1] The University of New England,Department of Mathematics
[2] Jiangxi Normal University,Department of Mathematics
关键词
35J60; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \begin{array}{ll}-\Delta u = \mu |u|^\frac{4}{N-2}u + \frac{|u|^\frac{4-2s}{N-2}u}{|x|^{s}} + a(x)u, & x \in \Omega,\\ u=0, & {\rm on}\; \partial \Omega \end{array}\right.$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \mu \ge 0, 0 < s < 2, 0 \in \partial \Omega}$$\end{document} and Ω is a bounded domain in RN. We prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N \ge 7, a(0) > 0}$$\end{document} and all the principle curvatures of ∂Ω at 0 are negative, then the above problem has infinitely many solutions.
引用
收藏
页码:587 / 610
页数:23
相关论文
共 50 条