We consider the boundary blow-up Monge–Ampère problem with a gradient term M[u]=K(x)f(u)|∇u|qforx∈Ω,u(x)→+∞asdist(x,∂Ω)→0,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} M[u]=K(x)f(u)|\nabla u|^q \text{ for } x \in \Omega ,\; u(x)\rightarrow +\infty \text{ as } \mathrm{dist}(x,\partial \Omega )\rightarrow 0, \end{aligned}$$\end{document}where M[u]=det(uxixj)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M[u]=\det \, (u_{x_{i}x_{j}})$$\end{document} is the Monge–Ampère operator, q≥0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q\ge 0$$\end{document}, Ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega $$\end{document} is a smooth, bounded, strictly convex domain in RN(N≥2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathbb {R}^N \, (N\ge 2)$$\end{document}, and K, f are smooth positive functions. Under K and q satisfying suitable conditions, we first prove that the above boundary blow-up problem admits a strictly convex solution if and only if f satisfies a Keller–Osserman type condition. Then we show the asymptotic behavior of strictly convex solutions to the boundary blow-up Monge–Ampère problem under a new weaker condition than previous references. Finally, we also show the existence of strictly convex solutions under appropriate assumptions on K and q, without assuming that f satisfies a Keller–Osserman type condition. On the technical level, we adopt the sub-supersolution method and the Karamata regular variation theory.