Data-Driven Finite Elasticity

被引:0
|
作者
S. Conti
S. Müller
M. Ortiz
机构
[1] Universität Bonn,Institut für Angewandte Mathematik
[2] Hausdorff Center for Mathematics,Division of Engineering and Applied Science
[3] California Institute of Technology,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We extend to finite elasticity the Data-Driven formulation of geometrically linear elasticity presented in Conti et al. (Arch Ration Mech Anal 229:79–123, 2018). The main focus of this paper concerns the formulation of a suitable framework in which the Data-Driven problem of finite elasticity is well-posed in the sense of existence of solutions. We confine attention to deformation gradients F∈Lp(Ω;Rn×n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F \in L^p(\Omega ;{\mathbb {R}}^{n\times n})$$\end{document} and first Piola-Kirchhoff stresses P∈Lq(Ω;Rn×n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P \in L^q(\Omega ;{\mathbb {R}}^{n\times n})$$\end{document}, with (p,q)∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p,q)\in (1,\infty )$$\end{document} and 1/p+1/q=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/p+1/q=1$$\end{document}. We assume that the material behavior is described by means of a material data set containing all the states (F, P) that can be attained by the material, and develop germane notions of coercivity and closedness of the material data set. Within this framework, we put forth conditions ensuring the existence of solutions. We exhibit specific examples of two- and three-dimensional material data sets that fit the present setting and are compatible with material frame indifference.
引用
收藏
页码:1 / 33
页数:32
相关论文
共 50 条
  • [1] Data-Driven Finite Elasticity
    Conti, S.
    Mueller, S.
    Ortiz, M.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (01) : 1 - 33
  • [2] Finite element solver for data-driven finite strain elasticity
    Platzer, Auriane
    Leygue, Adrien
    Stainier, Laurent
    Ortiz, Michael
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 379
  • [3] Assessment of data-driven computational mechanics in finite strain elasticity
    Platzer, A.
    Leygue, A.
    Stainier, L.
    CONSTITUTIVE MODELS FOR RUBBER XI, 2019, : 230 - 235
  • [4] Data-Driven Problems in Elasticity
    S. Conti
    S. Müller
    M. Ortiz
    Archive for Rational Mechanics and Analysis, 2018, 229 : 79 - 123
  • [5] Data-Driven Problems in Elasticity
    Conti, S.
    Mueller, S.
    Ortiz, M.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (01) : 79 - 123
  • [6] A data-driven approach to nonlinear elasticity
    Nguyen, Lu Trong Khiem
    Keip, Marc-Andre
    COMPUTERS & STRUCTURES, 2018, 194 : 97 - 115
  • [8] Data-Driven Bending Elasticity Design by Shell Thickness
    Zhang, Xiaoting
    Le, Xinyi
    Wu, Zihao
    Whiting, Emily
    Wang, Charlie C. L.
    COMPUTER GRAPHICS FORUM, 2016, 35 (05) : 157 - 166
  • [9] Data-driven computing in elasticity via kernel regression
    Kanno, Yoshihiro
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2018, 8 (06) : 361 - 365
  • [10] Elastic Context: Encoding Elasticity for Data-driven Models of Textiles
    Longhini, Alberta
    Moletta, Marco
    Reichlin, Alfredo
    Welle, Michael C.
    Kravberg, Alexander
    Wang, Yufei
    Held, David
    Erickson, Zackory
    Kragic, Danica
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 1764 - 1770