On the hardness of the classical job shop problem

被引:0
|
作者
H. Bräsel
M. Harborth
T. Tautenhahn
P. Willenius
机构
来源
关键词
Partial Order; Huge Difference; Polynomial Algorithm; Enumeration Algorithm; Minimal Sequence;
D O I
暂无
中图分类号
学科分类号
摘要
In a classical job shop problem, n jobs have to be processed onm machines, where the machine orders of the jobs are given. Computationalexperiments show that there are huge differences in the hardness of the job shop problem tominimize makespan depending on the given machine orders. We study a partial order“\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \succ } $$ \end{document}” on the set of sequences, i.e., feasiblecombinations of job orders and machine orders, with the property thatB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \succ } $$ \end{document}B implies thatthe makespan of the semiactive schedule corresponding to sequence B isless than or equal to the makespan of any schedule corresponding to B.The minimal sequences according to this partial order are called irreducible.We present a polynomial algorithm to decide whether B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \succ } $$ \end{document}B holds andwe develop a new enumeration algorithm for irreducible sequences. To explain the differencesin the hardness of job shop problems, we study the relation between the hardness of a jobshop problem and the number of irreducible sequences corresponding to the given machine orders.
引用
收藏
页码:265 / 279
页数:14
相关论文
共 50 条
  • [1] On the hardness of the classical job shop problem
    Bräsel, H
    Harborth, M
    Tautenhahn, T
    Willenius, P
    ANNALS OF OPERATIONS RESEARCH, 1999, 92 (0) : 265 - 279
  • [2] From the classical job shop to a real problem: A genetic algorithm approach
    Brizuela, CA
    Sannomiya, N
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 4174 - 4180
  • [3] Application of Ordinal Optimization to Stochastic Classical Job Shop Scheduling Problem
    Horng, Shih-Cheng
    Man, Guan-Ling
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 476 - 480
  • [4] Solving the Extended Job Shop Scheduling Problem with AGVs - Classical and Quantum Approaches
    Geitz, Marc
    Grozea, Cristian
    Steigerwald, Wolfgang
    Stoehr, Robin
    Wolf, Armin
    INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, CPAIOR 2022, 2022, 13292 : 120 - 137
  • [5] ON THE JOB SHOP SEQUENCING PROBLEM
    REINITZ, RC
    OPERATIONS RESEARCH, 1961, 9 : B144 - B145
  • [6] Utilization of modified genetic algorithm (GJOB) for solving classical job shop scheduling problem
    Perinic, M.
    Car, Z.
    Mikac, T.
    Annals of DAAAM for 2004 & Proceedings of the 15th International DAAAM Symposium: INTELLIGNET MANUFACTURING & AUTOMATION: GLOBALISATION - TECHNOLOGY - MEN - NATURE, 2004, : 341 - 342
  • [7] Comparative study of different heuristics algorithms in solving classical job shop scheduling problem
    Kumar, Neeraj
    Mishra, Abhishek
    MATERIALS TODAY-PROCEEDINGS, 2020, 22 : 1796 - 1802
  • [8] Hardness of Approximating Flow and Job Shop Scheduling Problems
    Mastrolilli, Monaldo
    Svensson, Ola
    JOURNAL OF THE ACM, 2011, 58 (05)
  • [9] Job Shop Scheduling Problem with Job Sizes and Inventories
    Shen Xinyi
    Wang Aimin
    Yan, Ge
    Ye Jieran
    PROCEEDINGS OF 2020 IEEE 11TH INTERNATIONAL CONFERENCE ON MECHANICAL AND INTELLIGENT MANUFACTURING TECHNOLOGIES (ICMIMT 2020), 2020, : 202 - 206
  • [10] Solving a job shop scheduling problem
    Kumar, K. R. Anil
    Dhas, J. Edwin Raja
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2023, 46 (04) : 315 - 330