共 50 条
Closing of the Haldane gap in a spin-1 XXZ chain
被引:0
|作者:
Chan Yu
Ji-Woo Lee
机构:
[1] Myongji University,Department of Physics
来源:
关键词:
XXZ model;
Quantum phase transition;
Matrix product states;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study the energy gaps of a spin-1 XXZ model in one dimension. Using an infinite-size density matrix renormalization group (iDMRG) and a variational uniform matrix product state algorithm (vuMPS), we obtained the energy gaps (Eg\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$E_\mathrm{g}$$\end{document}) as a function of anisotropy Δ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta $$\end{document}. We found that the closing point of the energy gap changes as we increase the bond dimension. By scaling the energy gaps, we find the critical points for the Haldane-antiferromagnetic (H→\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rightarrow $$\end{document}AF) transition and the Haldane-XY (H→\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rightarrow $$\end{document}XY) phase transition. From the gap scaling formulae, Eg(H→AF)=A(Δc1-Δ)zν\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$E_\mathrm{g}(\mathrm{H} \rightarrow \mathrm{AF}) = A(\Delta _{c1} - \Delta )^{z\nu }$$\end{document} and Eg(H→XY)=aexp(-bz′/Δ-Δc2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$E_\mathrm{g}( \mathrm{H} \rightarrow \mathrm{XY}) = a \exp (- bz' / \sqrt{\Delta -\Delta _{c2}}) $$\end{document} where z,z′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$z, z'$$\end{document} are dynamical critical exponents, ν\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu $$\end{document} is a correlation length critical exponent, Δc1(2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta _{c1(2)}$$\end{document} is the critical point for each transition and A, a, and b are scaling parameters, we obtained information regarding the critical points and the scaling parameters.
引用
收藏
页码:841 / 845
页数:4
相关论文