Closing of the Haldane gap in a spin-1 XXZ chain

被引:0
|
作者
Chan Yu
Ji-Woo Lee
机构
[1] Myongji University,Department of Physics
来源
关键词
XXZ model; Quantum phase transition; Matrix product states;
D O I
暂无
中图分类号
学科分类号
摘要
We study the energy gaps of a spin-1 XXZ model in one dimension. Using an infinite-size density matrix renormalization group (iDMRG) and a variational uniform matrix product state algorithm (vuMPS), we obtained the energy gaps (Eg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{g}$$\end{document}) as a function of anisotropy Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}. We found that the closing point of the energy gap changes as we increase the bond dimension. By scaling the energy gaps, we find the critical points for the Haldane-antiferromagnetic (H→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document}AF) transition and the Haldane-XY (H→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document}XY) phase transition. From the gap scaling formulae, Eg(H→AF)=A(Δc1-Δ)zν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{g}(\mathrm{H} \rightarrow \mathrm{AF}) = A(\Delta _{c1} - \Delta )^{z\nu }$$\end{document} and Eg(H→XY)=aexp(-bz′/Δ-Δc2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\mathrm{g}( \mathrm{H} \rightarrow \mathrm{XY}) = a \exp (- bz' / \sqrt{\Delta -\Delta _{c2}}) $$\end{document} where z,z′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z, z'$$\end{document} are dynamical critical exponents, ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} is a correlation length critical exponent, Δc1(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{c1(2)}$$\end{document} is the critical point for each transition and A, a, and b are scaling parameters, we obtained information regarding the critical points and the scaling parameters.
引用
收藏
页码:841 / 845
页数:4
相关论文
共 50 条
  • [1] Closing of the Haldane gap in a spin-1 XXZ chain
    Yu, Chan
    Lee, Ji-Woo
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2021, 79 (09) : 841 - 845
  • [2] VARIATIONAL APPROACH TO THE XXZ SPIN-1 LINEAR-CHAIN - ELEMENTARY EXCITATIONS AND HALDANE CONJECTURE
    GOMEZSANTOS, G
    PHYSICAL REVIEW LETTERS, 1989, 63 (07) : 790 - 793
  • [3] HALDANE GAP IN THE SPIN-1/2 DOUBLE CHAIN HEISENBERG-ANTIFERROMAGNET
    HIDA, K
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1992, 104 : 783 - 784
  • [4] HALDANE CONJECTURE AND ELEMENTARY EXCITATIONS IN THE XXZ SPIN-1 LINEAR-CHAIN - A NOVEL VARIATIONAL APPROACH
    GOMEZSANTOS, G
    JOURNAL OF APPLIED PHYSICS, 1990, 67 (09) : 5610 - 5612
  • [5] HALDANE GAP AND THE SPIN-1 ANTIFERROMAGNETIC INTEGRABLE MODEL
    SAITOH, K
    TAKADA, S
    KUBO, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (11) : 3755 - 3758
  • [6] Emergent spin-1 Haldane gap and ferroelectricity in a frustrated spin-1/2 ladder
    Ueda, H.
    Onoda, S.
    Yamaguchi, Y.
    Kimura, T.
    Yoshizawa, D.
    Morioka, T.
    Hagiwara, M.
    Hagihala, M.
    Soda, M.
    Masuda, T.
    Sakaldbara, T.
    Tomiyasu, K.
    Ohira-Kawamura, S.
    Nakajima, K.
    Kajimoto, R.
    Nakamura, M.
    Inamura, Y.
    Reynolds, N.
    Frontzek, M.
    White, J. S.
    Hase, M.
    Yasui, Y.
    PHYSICAL REVIEW B, 2020, 101 (14)
  • [7] Quenching the Haldane Gap in Spin-1 Heisenberg Antiferromagnets
    Wierschem, Keola
    Sengupta, Pinaki
    PHYSICAL REVIEW LETTERS, 2014, 112 (24)
  • [8] HALDANE GAP IN THE SPIN-1/2 DOUBLE CHAIN ANISOTROPIC HEISENBERG-ANTIFERROMAGNET
    HIDA, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (06) : 1939 - 1942
  • [9] EXPERIMENTAL-EVIDENCE FOR THE HALDANE GAP IN A SPIN-1, NEARLY ISOTROPIC, ANTIFERROMAGNETIC CHAIN
    BUYERS, WJL
    MORRA, RM
    ARMSTRONG, RL
    HOGAN, MJ
    GERLACH, P
    HIRAKAWA, K
    PHYSICAL REVIEW LETTERS, 1986, 56 (04) : 371 - 374
  • [10] Extended cluster spin-1/2 XXZ chain
    Tahvili, Masourneh
    Mandavifar, Saeed
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 466 : 21 - 29