A graph is said to be distance-integral if every eigenvalue of its distance matrix is an integer. In this paper, we study the distance spectrum of abelian Cayley graphs and a class of non-abelian Cayley graphs, namely Cayley graphs over the dicyclic group T4n=⟨a,b|a2n=1,an=b2,b-1ab=a-1⟩\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_{4n}=\langle a,b\,|\,a^{2n}=1, a^n=b^2, b^{-1}ab=a^{-1}\rangle $$\end{document} of order 4n. Based on the representation theory of finite groups, we first show that an abelian Cayley graph is integral if and only if it is distance-integral, which naturally contains a main result obtained in [Electron. J. Comb. 19(4) (2012) paper 25, 8 pp]. Then, we display a necessary and sufficient condition for a Cayley graph over T4n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_{4n}$$\end{document} to be distance-integral; some simple necessary (or sufficient) conditions for the distance integrality of a Cayley graph over T4n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_{4n}$$\end{document} in terms of the Boolean algebra of a\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left<a\right>$$\end{document} are provided as well. Consequently, some infinite families of distance-integral Cayley graphs over T4n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_{4n}$$\end{document} are constructed. Finally, for a prime p≥3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p\ge 3$$\end{document}, all the distance-integral Cayley graphs over T4p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_{4p}$$\end{document} are completely characterized.