Distance-integral Cayley graphs over abelian groups and dicyclic groups

被引:0
|
作者
Jing Huang
Shuchao Li
机构
[1] South China University of Technology,School of Mathematics
[2] Central China Normal University,School of Mathematics and Statistics
来源
关键词
Distance-integral Cayley graph; Dicyclic group; Irreducible representation; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is said to be distance-integral if every eigenvalue of its distance matrix is an integer. In this paper, we study the distance spectrum of abelian Cayley graphs and a class of non-abelian Cayley graphs, namely Cayley graphs over the dicyclic group T4n=⟨a,b|a2n=1,an=b2,b-1ab=a-1⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{4n}=\langle a,b\,|\,a^{2n}=1, a^n=b^2, b^{-1}ab=a^{-1}\rangle $$\end{document} of order 4n. Based on the representation theory of finite groups, we first show that an abelian Cayley graph is integral if and only if it is distance-integral, which naturally contains a main result obtained in [Electron. J. Comb. 19(4) (2012) paper 25, 8 pp]. Then, we display a necessary and sufficient condition for a Cayley graph over T4n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{4n}$$\end{document} to be distance-integral; some simple necessary (or sufficient) conditions for the distance integrality of a Cayley graph over T4n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{4n}$$\end{document} in terms of the Boolean algebra of a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left<a\right>$$\end{document} are provided as well. Consequently, some infinite families of distance-integral Cayley graphs over T4n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{4n}$$\end{document} are constructed. Finally, for a prime p≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 3$$\end{document}, all the distance-integral Cayley graphs over T4p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{4p}$$\end{document} are completely characterized.
引用
收藏
页码:1047 / 1063
页数:16
相关论文
共 50 条
  • [1] Distance-integral Cayley graphs over abelian groups and dicyclic groups
    Huang, Jing
    Li, Shuchao
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (04) : 1047 - 1063
  • [2] Distance powers of integral Cayley graphs over dihedral groups and dicyclic groups
    Cheng, Tao
    Feng, Lihua
    Liu, Weijun
    Lu, Lu
    Stevanovic, Dragan
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (07): : 1281 - 1290
  • [3] Distance Powers and Distance Matrices of Integral Cayley Graphs over Abelian Groups
    Klotz, Walter
    Sander, Torsten
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [4] Integral Cayley graphs over abelian groups
    Klotz, Walter
    Sander, Torsten
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [5] Distance-regular Cayley graphs over dicyclic groups
    Xueyi Huang
    Kinkar Chandra Das
    Lu Lu
    Journal of Algebraic Combinatorics, 2023, 57 : 403 - 420
  • [6] Distance-regular Cayley graphs over dicyclic groups
    Huang, Xueyi
    Das, Kinkar Chandra
    Lu, Lu
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 57 (02) : 403 - 420
  • [7] Integral mixed Cayley graphs over abelian groups
    Kadyan, Monu
    Bhattacharjya, Bikash
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04):
  • [8] On Cayley graphs over generalized dicyclic groups
    Behajaina, Angelot
    Legrand, Francois
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 642 : 264 - 284
  • [9] Integral Quartic Cayley Graphs on Abelian Groups
    Abdollahi, A.
    Vatandoost, E.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [10] On distance-regular Cayley graphs of generalized dicyclic groups
    Huang, Xueyi
    Das, Kinkar Chandra
    DISCRETE MATHEMATICS, 2022, 345 (10)