Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators

被引:0
|
作者
Yangyang Zhang
Dachun Yang
Wen Yuan
Songbai Wang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
[2] Hubei Normal University,College of Mathematics and Statistics
来源
Science China Mathematics | 2021年 / 64卷
关键词
ball quasi-Banach function space; weak Hardy space; Orlicz-slice space; maximal function; atom; molecule; Calderón-Zygmund operator; 42B30; 42B25; 42B20; 42B35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a ball quasi-Banach function space on ℝn. In this article, we introduce the weak Hardy-type space W HX(ℝn), associated with X, via the radial maximal function. Assuming that the powered Hardy-Littlewood maximal operator satisfies some Fefferman-Stein vector-valued maximal inequality on X as well as it is bounded on both the weak ball quasi-Banach function space WX and the associated space, we then establish several real-variable characterizations of W HX (ℝn), respectively, in terms of various maximal functions, atoms and molecules. As an application, we obtain the boundedness of Calderón-Zygmund operators from the Hardy space HX (ℝn) to W HX (ℝn), which includes the critical case. All these results are of wide applications. Particularly, when X:=Mqp(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X: = M_q^p({\mathbb{R}^n})$$\end{document} (the Morrey space), X:=Lp→(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X: = {L^{\vec p}}({\mathbb{R}^n})$$\end{document} (the mixed-norm Lebesgue space) and X:=(EΦq)t(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X: = {(E_\Phi ^q)_t}({^n})$$\end{document} (the Orlicz-slice space), which are all ball quasi-Banach function spaces rather than quasi-Banach function spaces, all these results are even new. Due to the generality, more applications of these results are predictable.
引用
收藏
页码:2007 / 2064
页数:57
相关论文
共 50 条
  • [1] Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators
    Yangyang Zhang
    Dachun Yang
    Wen Yuan
    Songbai Wang
    Science China(Mathematics), 2021, 64 (09) : 2007 - 2064
  • [2] Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderon-Zygmund operators
    Zhang, Yangyang
    Yang, Dachun
    Yuan, Wen
    Wang, Songbai
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (09) : 2007 - 2064
  • [3] Weak Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Decompositions, Real Interpolation, and Calderón–Zygmund Operators
    Jingsong Sun
    Dachun Yang
    Wen Yuan
    The Journal of Geometric Analysis, 2022, 32
  • [4] Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Littlewood—Paley Characterizations with Applications to Boundedness of Calderón—Zygmund Operators
    Xian Jie Yan
    Zi Yi He
    Da Chun Yang
    Wen Yuan
    Acta Mathematica Sinica, English Series, 2022, 38 : 1133 - 1184
  • [5] Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Littlewood–Paley Characterizations with Applications to Boundedness of Calderón–Zygmund Operators
    Xian Jie YAN
    Zi Yi HE
    Da Chun YANG
    Wen YUAN
    Acta Mathematica Sinica,English Series, 2022, (07) : 1133 - 1184
  • [6] Weak type estimates of genuine Calderón-Zygmund operators on the local Morrey spaces associated with ball quasi-Banach function spaces
    Shi, Mingwei
    Zhou, Jiang
    Wang, Songbai
    GEORGIAN MATHEMATICAL JOURNAL, 2024, 31 (06) : 1011 - 1020
  • [7] Strongly singular Calderón–Zygmund operators on Hardy spaces associated with ball quasi-Banach function spaces
    Kwok-Pun Ho
    Analysis and Mathematical Physics, 2023, 13
  • [8] Weak Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Decompositions, Real Interpolation, and Calderon-Zygmund Operators
    Sun, Jingsong
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (07)
  • [9] Boundedness of Calderón-Zygmund operators in product Hardy spaces
    Yong-sheng Han
    Da-chun Yang
    Applied Mathematics-A Journal of Chinese Universities, 2009, 24 : 321 - 335
  • [10] Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Littlewood-Paley Characterizations with Applications to Boundedness of Calderon-Zygmund Operators
    Yan, Xian Jie
    He, Zi Yi
    Yang, Da Chun
    Yuan, Wen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (07) : 1133 - 1184