On the n-vertex trees with sixth to fifteenth maximum harmonic indices

被引:0
|
作者
Akbar Ali
Selvaraj Balachandran
Suresh Elumalai
Toufik Mansour
机构
[1] University of Management and Technology,Knowledge Unit of Science
[2] University of Ha’il,Department of Mathematics, Faculty of Science
[3] School of Arts,Department of Mathematics
[4] Sciences and Humanities,Department of Mathematics and Applied Mathematics
[5] SASTRA Deemed University,Department of Mathematics
[6] University of the Free State,undefined
[7] University of Haifa,undefined
来源
Afrika Matematika | 2020年 / 31卷
关键词
Harmonic index; Extremal problem; Trees; 05C07; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
The harmonic index of a graph G is denoted by H(G) and is defined as H(G)=∑uv∈E(G)2du+dv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(G)=\sum _{uv\in E(G)} \frac{2}{d_{u}+d_{v}}$$\end{document}, where du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_u$$\end{document}, dv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_v$$\end{document} denote the degrees of the vertices u, v, respectively, of G and E(G) is the edge set of G. In this paper, the graphs having sixth to fifteenth maximum harmonic indices are characterized from the class of all n-vertex trees for sufficiently large n.
引用
收藏
页码:771 / 780
页数:9
相关论文
共 50 条
  • [1] On the n-vertex trees with sixth to fifteenth maximum harmonic indices
    Ali, Akbar
    Balachandran, Selvaraj
    Elumalai, Suresh
    Mansour, Toufik
    AFRIKA MATEMATIKA, 2020, 31 (5-6) : 771 - 780
  • [2] Maximum Variable Connectivity Index of n-Vertex Trees
    Yousaf, Shamaila
    Bhatti, Akhlaq Ahmad
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2022, 13 (01): : 33 - 44
  • [3] On the extremal total irregularity index of n-vertex trees with fixed maximum degree
    Yousaf, Shamaila
    Bhatti, Akhlaq Ahmad
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (01) : 113 - 121
  • [4] On the Extremal Zagreb Indices of n-Vertex Chemical Trees with Fixed Number of Segments or Branching Vertices
    Noureen, Sadia
    Ali, Akbar
    Bhatti, Akhlaq Ahmad
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2020, 84 (02) : 513 - 534
  • [5] Trees with Maximum Vertex-Degree-Based Topological Indices
    Gao, Wei
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 88 (03) : 535 - 552
  • [6] Almost Every n-Vertex Graph is Determined by Its 3 log2 n-Vertex Subgraphs
    Farhadian, Ameneh
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2020, 31 (05) : 611 - 619
  • [7] On the Multiplicative Reformulated First Zagreb Index of n-Vertex Trees with Respect to Matching Number
    Yousaf, Shamaila
    Naeem, Anisa
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2024, 15 (03): : 203 - 225
  • [8] REDUCTION FORMULAS AND REPRESENTATIONS OF AMPLITUDES FOR N-VERTEX GRAPHS
    VALUEV, BN
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1965, 1 (04): : 510 - &
  • [9] CHARACTERIZATION OF n-VERTEX GRAPHS WITH METRIC DIMENSION n - 3
    Jannesari, Mohsen
    Omoomi, Behnaz
    MATHEMATICA BOHEMICA, 2014, 139 (01): : 1 - 23
  • [10] Extremum Modified First Zagreb Connection Index of n-Vertex Trees with Fixed Number of Pendent Vertices
    Noureen, Sadia
    Bhatti, Akhlaq Ahmad
    Ali, Akbar
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020