Subconvexity for Rankin-Selberg L-Functions of Maass Forms

被引:0
|
作者
Jianya Liu
Yangbo Ye
机构
[1] Shandong University,Department of Mathematics
[2] The University of Iowa,Department of Mathematics
来源
关键词
Cusp Form; Critical Line; Laplace Eigenvalue; Unique Ergodicity; Maass Form;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove a subconvexity bound for Rankin–Selberg L-functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L(s,f \otimes g)$\end{document} associated with a Maass cusp form f and a fixed cusp form g in the aspect of the Laplace eigenvalue 1/4 + k2 of f, on the critical line Re s = 1/2. Using this subconvexity bound, we prove the equidistribution conjecture of Rudnick and Sarnak [RS] on quantum unique ergodicity for dihedral Maass forms, following the work of Sarnak [S2] and Watson [W]. Also proved here is that the generalized Lindelöf hypothesis for the central value of our L-function is true on average.
引用
收藏
页码:1296 / 1323
页数:27
相关论文
共 50 条