Heat Conduction Networks

被引:0
|
作者
Christian Maes
Karel Netočný
Michel Verschuere
机构
[1] Instituut voor Theoretische Fysica K.U. Leuven,
来源
关键词
Heat current; entropy production; nonequilibrium state;
D O I
暂无
中图分类号
学科分类号
摘要
We study networks of interacting oscillators, driven at the boundary by heat baths at possibly different temperatures. A set of first elementary questions are discussed concerning the uniqueness of a stationary possibly Gibbsian density and the nature of the entropy production and the local heat currents. We also derive a Carnot efficiency relation for the work that can be extracted from the heat engine.
引用
收藏
页码:1219 / 1244
页数:25
相关论文
共 50 条
  • [1] Heat conduction networks
    Maes, C
    Netocny, K
    Verschuere, M
    JOURNAL OF STATISTICAL PHYSICS, 2003, 111 (5-6) : 1219 - 1244
  • [2] Convolutional neural networks for heat conduction
    Tadeparti, Sidharth
    Nandigana, Vishal V. R.
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 38
  • [3] Using Neural Networks for Thermal Analysis of Heat Conduction
    Abdoh, D. A.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2023, 16 (02)
  • [4] Heat conduction process on community networks as a recommendation model
    Zhang, Yi-Cheng
    Blattner, Marcel
    Yu, Yi-Kuo
    PHYSICAL REVIEW LETTERS, 2007, 99 (15)
  • [5] Heat conduction in simple networks: The effect of interchain coupling
    Liu, Zonghua
    Li, Baowen
    PHYSICAL REVIEW E, 2007, 76 (05):
  • [6] Temperature dependence of heat conduction coefficient in nanotube/nanowire networks
    熊科诏
    刘宗华
    Chinese Physics B, 2017, 26 (09) : 575 - 580
  • [7] Temperature dependence of heat conduction coefficient in nanotube/nanowire networks
    Xiong, Kezhao
    Liu, Zonghua
    CHINESE PHYSICS B, 2017, 26 (09)
  • [8] Heat conduction in fractal tree-like branched networks
    Xu, Peng
    Yu, Boming
    Yun, Meijuan
    Zou, Mingqing
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (19-20) : 3746 - 3751
  • [9] Neural networks in solution of inverse coefficient heat conduction problem
    Pavlov, D.Yu.
    Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 1994, (04): : 44 - 51
  • [10] SOLUTION OF THE INVERSE PROBLEM OF HEAT CONDUCTION USING NEURAL NETWORKS
    Molchanov, A. M.
    Yanyshev, D. S.
    Ezhov, A. D.
    Bykov, L. V.
    HEAT TRANSFER RESEARCH, 2025, 56 (07) : 1 - 12