On the stability of extensions of tangent sheaves on Kähler–Einstein Fano/Calabi–Yau pairs

被引:0
|
作者
Chi Li
机构
[1] Purdue University,Department of Mathematics
来源
Mathematische Annalen | 2021年 / 381卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let S be a smooth projective variety and Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} a simple normal crossing Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}$$\end{document}-divisor with coefficients in (0, 1]. For any ample Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}$$\end{document}-line bundle L over S, we denote by E(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {E}(L)$$\end{document} the extension sheaf of the orbifold tangent sheaf TS(-log(Δ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_S(-\log (\Delta ))$$\end{document} by the structure sheaf OS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}_S$$\end{document} with the extension class c1(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_1(L)$$\end{document}. We prove the following two results: if -(KS+Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-(K_S+\Delta )$$\end{document} is ample and (S,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S, \Delta )$$\end{document} is K-semistable, then for any λ∈Q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in {\mathbb {Q}}_{>0}$$\end{document}, the extension sheaf E(λc1(-(KS+Δ)))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {E}({\lambda c_1(-(K_S+\Delta ))})$$\end{document} is slope semistable with respect to -(KS+Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-(K_S+\Delta )$$\end{document};if KS+Δ≡0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_S+\Delta \equiv 0$$\end{document}, then for any ample Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}$$\end{document}-line bundle L over S, E(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {E}(L)$$\end{document} is slope semistable with respect to L. These results generalize Tian’s result where -KS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-K_S$$\end{document} is ample and Δ=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta =\emptyset $$\end{document}. We give two applications of these results. The first is to study a question by Borbon–Spotti about the relationship between local Euler numbers and normalized volumes of log canonical surface singularities. We prove that the two invariants differ only by a factor 4 when the log canonical pair is an orbifold cone over a marked Riemann surface. In particular we complete the computation of Langer’s local Euler numbers for any line arrangements in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^2$$\end{document}. The second application is to derive Miyaoka–Yau-type inequalities on K-semistable log-smooth Fano pairs and Calabi–Yau pairs, which generalize some Chern-number inequalities proved by Song–Wang.
引用
收藏
页码:1943 / 1977
页数:34
相关论文
共 39 条
  • [1] On the stability of extensions of tangent sheaves on Kahler-Einstein Fano/Calabi-Yau pairs
    Li, Chi
    MATHEMATISCHE ANNALEN, 2021, 381 (3-4) : 1943 - 1977
  • [2] Boundedness of log Calabi-Yau pairs of Fano type
    Hacon, Christopher D.
    Xu, Chenyang
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (06) : 1699 - 1716
  • [3] Boundedness of log Calabi-Yau pairs of Fano type
    Hacon, Christopher D.
    Xi, Chenyang
    MATHEMATICAL RESEARCH LETTERS, 2015, 22 (06) : 1699 - 1716
  • [4] Kähler–Einstein metrics on Fano manifolds
    Gang Tian
    Japanese Journal of Mathematics, 2015, 10 : 1 - 41
  • [5] Exact Kähler potential for Calabi-Yau fourfolds
    Yoshinori Honma
    Masahide Manabe
    Journal of High Energy Physics, 2013
  • [6] G-uniform stability and Kähler–Einstein metrics on Fano varieties
    Chi Li
    Inventiones mathematicae, 2022, 227 : 661 - 744
  • [7] An example of non-Kähler Calabi-Yau fourfold
    Lee, Nam-hoon
    MATHEMATICAL RESEARCH LETTERS, 2023, 30 (03) : 807 - 820
  • [8] Instantons on Calabi-Yau and hyper-Kähler cones
    Jakob C. Geipel
    Marcus Sperling
    Journal of High Energy Physics, 2017
  • [9] Algebraic approximation and the decomposition theorem for Kähler Calabi–Yau varieties
    Benjamin Bakker
    Henri Guenancia
    Christian Lehn
    Inventiones mathematicae, 2022, 228 : 1255 - 1308
  • [10] Geodesics in the extended Kähler cone of Calabi-Yau threefolds
    Callum R. Brodie
    Andrei Constantin
    Andre Lukas
    Fabian Ruehle
    Journal of High Energy Physics, 2022