We prove that the functionals \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\delta _\Gamma (B_t ) and \frac{{\partial ^k }}{{\partial x_1^k ...\partial x_d^{k_d } }}\delta _\Gamma (B_t ), k_1 + ... + k_d = k > 1,$$
\end{document} of a d-dimensional Brownian process are Hida distributions, i.e., generalized Wiener functionals. Here, δΓ(·) is a generalization of the δ-function constructed on a bounded closed smooth surface Γ⊂Rd, k≥1 and acting on finite continuous functions φ(·) in Rd according to the rule \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$(\delta _\Gamma ,\varphi ) : = \int\limits_\Gamma {\varphi (x} )\lambda (dx),$$
\end{document} where ι(·) is a surface measure on Γ.