Robustness for a Liouville Type Theorem in Exterior Domains

被引:0
|
作者
Juliette Bouhours
机构
[1] UPMC Univ Paris 06,Sorbonne Universités
[2] UMR 7598,CNRS
来源
Journal of Dynamics and Differential Equations | 2015年 / 27卷
关键词
Elliptic equation; Liouville type result; Obstacle ; Maximum principle; 35K57; 35B51; 35B53;
D O I
暂无
中图分类号
学科分类号
摘要
We are interested in the robustness of a Liouville type theorem for a reaction diffusion equation in exterior domains. Indeed Berestycki et al. (Commun. Pure Appl. Math., 62(6):729–788, 2009) proved such a result as soon as the domain satisfies some geometric properties. We investigate here whether their result holds for perturbations of the domain. We prove that as soon as our perturbation is close to the initial domain in the C2,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{2,\alpha }$$\end{document} topology the result remains true while it does not if the perturbation is not smooth enough.
引用
收藏
页码:297 / 306
页数:9
相关论文
共 50 条