Evaporative cooling of speleothem drip water

被引:0
|
作者
M. O. Cuthbert
G. C. Rau
M. S. Andersen
H. Roshan
H. Rutlidge
C. E. Marjo
M. Markowska
C. N. Jex
P. W. Graham
G. Mariethoz
R. I. Acworth
A. Baker
机构
[1] Connected Waters Initiative Research Centre,
[2] UNSW Australia,undefined
[3] Connected Waters Initiative Research Centre,undefined
[4] UNSW Australia,undefined
[5] Affiliated to the National Centre for Groundwater Research and Training,undefined
[6] School of Geography,undefined
[7] Earth and Environmental Sciences,undefined
[8] University of Birmingham,undefined
[9] Mark Wainwright Analytical Centre,undefined
[10] UNSW Australia,undefined
[11] Australian Nuclear Science and Technology Organisation,undefined
[12] Water Research Centre,undefined
[13] UNSW Australia,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ18O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change.
引用
收藏
相关论文
共 50 条
  • [1] Evaporative cooling of speleothem drip water
    Cuthbert, M. O.
    Rau, G. C.
    Andersen, M. S.
    Roshan, H.
    Rutlidge, H.
    Marjo, C. E.
    Markowska, M.
    Jex, C. N.
    Graham, P. W.
    Mariethoz, G.
    Acworth, R. I.
    Baker, A.
    SCIENTIFIC REPORTS, 2014, 4
  • [2] EVAPORATIVE COOLING OF A BODY OF WATER
    DAKE, JMK
    WATER RESOURCES RESEARCH, 1972, 8 (04) : 1087 - &
  • [3] Controls on water drop volume at speleothem drip sites: An experimental study
    Collister, Christopher
    Mattey, David
    JOURNAL OF HYDROLOGY, 2008, 358 (3-4) : 259 - 267
  • [4] Evaporative cooling of water in a mechanical draft cooling tower
    Fisenko, SP
    Brin, AA
    Petruchik, AI
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (01) : 165 - 177
  • [5] Evaporative cooling of water in a natural draft cooling tower
    Fisenko, SP
    Petruchik, AI
    Solodukhin, AD
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (23) : 4683 - 4694
  • [6] EVAPORATIVE WATER COOLING-TOWERS
    LEFEVRE, MR
    MORAN, DR
    MECHANICAL ENGINEERING, 1986, 108 (08) : 29 - 31
  • [7] Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves
    Wackerbarth, A.
    Langebroek, P. M.
    Werner, M.
    Lohmann, G.
    Riechelmann, S.
    Borsato, A.
    Mangini, A.
    CLIMATE OF THE PAST, 2012, 8 (06) : 1781 - 1799
  • [8] Modelling the δ18O value of cave drip water and speleothem calcite
    Wackerbarth, A.
    Scholz, D.
    Fohlmeister, J.
    Mangini, A.
    EARTH AND PLANETARY SCIENCE LETTERS, 2010, 299 (3-4) : 387 - 397
  • [9] Drip water isotopes in semi-arid karst: Implications for speleothem paleoclimatology
    Cuthbert, Mark O.
    Baker, Andy
    Jex, Catherine N.
    Graham, Peter W.
    Treble, Pauline C.
    Andersen, Martin S.
    Acworth, R. Ian
    EARTH AND PLANETARY SCIENCE LETTERS, 2014, 395 : 194 - 204
  • [10] Mathematical modeling of evaporative cooling of water films in water-cooling towers
    A. I. Petruchik
    S. P. Fisenko
    Journal of Engineering Physics and Thermophysics, 1999, 72 (1) : 43 - 49