Quantitative trait loci mapping of yield and related traits using a high-density genetic map of maize

被引:0
|
作者
Lin Chen
Chunhui Li
Yongxiang Li
Yanchun Song
Dengfeng Zhang
Tianyu Wang
Yu Li
Yunsu Shi
机构
[1] Chinese Academy of Agricultural Sciences,Institute of Crop Sciences
来源
Molecular Breeding | 2016年 / 36卷
关键词
QTL; Yield; Genetic relationship; Maize; Epistasis;
D O I
暂无
中图分类号
学科分类号
摘要
Improving grain yield is the ultimate goal of the maize-breeding programs. In this study, analyses of conditional and unconditional quantitative trait locus (QTL) and epistatic interactions were used to elucidate the genetic architecture of yield and its related traits. A total of 15 traits of a recombinant inbred line population, including yield per plant (YPP), seven ear-related traits, and seven kernel-related traits, were measured in six different environments. Based on the genetic linkage map constructed using 2091 bins as markers, 56 main-effect QTLs for these traits were identified. These QTLs were distributed across eight genomic regions (bin 1.06, bin 4.02/4.05/4.08, bin 5.04, bin 7.04, bin 8.08, and bin 9.04), within the marker intervals of 85.45–6260.66 kb, and the phenotypic variance explained ranging from 5.69 to 11.56 %. One gene (GRMZM2G168229) encoding SBP-box domain protein was located in the small interval of qKRN4-3 and may be involved in patterning of kernel row number. Seventeen conditional QTLs identified for YPP were conditioned on its related traits and explained 6.18–23.15 % of the phenotypic variance. Conditional mapping analysis revealed that qYPP4-1, qYPP6-1, and qYPP8-1 are partially influenced by YPP-related traits at the individual QTL level. Digenic epistatic analysis identified 12 digenic interactions involving 22 loci across the whole genome. In addition, conditional digenic epistatic analysis identified 14 digenic interactions involving 21 loci. This study provides valuable information for understanding the genetic relationship between YPP and related traits and constitutes the first step toward the cloning of the relevant genes.
引用
收藏
相关论文
共 50 条
  • [1] Quantitative trait loci mapping of yield and related traits using a high-density genetic map of maize
    Chen, Lin
    Li, Chunhui
    Li, Yongxiang
    Song, Yanchun
    Zhang, Dengfeng
    Wang, Tianyu
    Li, Yu
    Shi, Yunsu
    MOLECULAR BREEDING, 2016, 36 (09)
  • [2] High-density genetic map and quantitative trait loci map of fruit-related traits in wax gourd (Benincasa hispida)
    Su, Liwen
    Gou, Jiquan
    Lv, Haixuan
    Cheng, Zhikui
    Ma, Lianlian
    Huang, Xiaochun
    Wu, Wenting
    Yu, Wenjin
    Wang, Peng
    Liu, Zhengguo
    EUPHYTICA, 2022, 218 (08)
  • [3] High-density genetic map and quantitative trait loci map of fruit-related traits in wax gourd (Benincasa hispida)
    Liwen Su
    Jiquan Gou
    Haixuan Lv
    Zhikui Cheng
    Lianlian Ma
    Xiaochun Huang
    Wenting Wu
    Wenjin Yu
    Peng Wang
    Zhengguo Liu
    Euphytica, 2022, 218
  • [4] Construction of a high-density genetic linkage map and mapping of quantitative trait loci for growth-related traits in silver carp (Hypophthalmichthys molitrix)
    Wang, Xinhua
    Liu, Haiyang
    Pang, Meixia
    Fu, Beide
    Yu, Xiaomu
    He, Shunping
    Tong, Jingou
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [5] Construction of a high-density genetic linkage map and mapping of quantitative trait loci for growth-related traits in silver carp (Hypophthalmichthys molitrix)
    Xinhua Wang
    Haiyang Liu
    Meixia Pang
    Beide Fu
    Xiaomu Yu
    Shunping He
    Jingou Tong
    Scientific Reports, 9
  • [6] Construction of a high-density genetic map for faba bean (Vicia faba L.) and quantitative trait loci mapping of seed-related traits
    Zhao, Na
    Xue, Dong
    Miao, Yamei
    Wang, Yongqiang
    Zhou, Enqiang
    Zhou, Yao
    Yao, Mengnan
    Gu, Chunyan
    Wang, Kaihua
    Li, Bo
    Wei, Libin
    Wang, Xuejun
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [7] Construction of High-Density Genetic Map and Mapping Quantitative Trait Loci for Growth Habit-Related Traits of Peanut (Arachis hypogaea L.)
    Li, Li
    Yang, Xinlei
    Cui, Shunli
    Meng, Xinhao
    Mu, Guojun
    Hou, Mingyu
    He, Meijing
    Zhang, Hui
    Liu, Lifeng
    Chen, Charles Y.
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [8] Quantitative Trait Loci Mapping for Yield and Related Traits in Cowpea
    Sodo, Abdoul Moumouni Iro
    Ongom, Patrick Obia
    Fatokun, Christian
    Olasanmi, Bunmi
    Dieng, Ibnou
    Boukar, Ousmane
    GENES, 2025, 16 (03)
  • [9] Genetic Dissection of Quantitative Trait Loci for Panicle Traits and Heat Tolerance by High-Density Bin Map in Rice
    LIU Hongyan
    MA Xiaosong
    LI Enxi
    ZENG Xianjun
    LUO Lijun
    Rice Science, 2022, 29 (06) : 507 - 525
  • [10] Genetic Dissection of Quantitative Trait Loci for Panicle Traits and Heat Tolerance by High-Density Bin Map in Rice
    LIU Hongyan
    MA Xiaosong
    LI Enxi
    ZENG Xianjun
    LUO Lijun
    Rice Science, 2022, (06) : 507 - 525