Nontrivial Solutions for a (p, q)-Type Critical Choquard Equation on the Heisenberg Group

被引:0
|
作者
Baoling Yang
Deli Zhang
Sihua Liang
机构
[1] Changchun Normal University,College of Mathematics
关键词
(; , ; )-Laplacian problem; Heisenberg group; Critical exponents; Nonlinearity; Variation methods; 35J20; 35R03; 35J60; 35J10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a critical (p, q) equation on the Heisenberg group of the following form: -ΔH,pu-ΔH,qu+V(ξ)(|u|p-2u+|u|q-2u)=μ∫HnF(ξ,u)|η-1ξ|λdξf(η,u)+|u|q∗-2u,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta _{H,p}u-\Delta _{H,q}u+V(\xi )(|u|^{p-2}u+|u|^{q-2}u)=\mu \int \limits _{{\mathbb {H}}^{n}} \frac{F(\xi ,u)}{|\eta ^{-1}\xi |^{\lambda }}{\text {d}}\xi f(\eta ,u)+|u|^{q^{*}-2}u, \end{aligned}$$\end{document}where the operator -ΔH,℘φ=divH(|DHφ|H℘-2DHφ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta _{H,\varvec{\wp }}\varphi ={\text {div}}_H(|D_H\varphi |_H^{\varvec{\wp }-2}D_H\varphi )$$\end{document}, with ℘∈{p,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\wp }\in \{p,q\}$$\end{document}, is the proverbial horizontal ℘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\wp }$$\end{document}-Laplacian on the Heisenberg group, 1<p<(2Q-λ)2Qq<q<Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 1< p<\frac{(2Q-\lambda )}{2Q}q< q < Q $$\end{document}, q∗=qQ/(Q-q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{*} = qQ/(Q-q)$$\end{document} is the critical exponent, and Q=2n+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q = 2n + 2 $$\end{document} is the homogeneous dimension of Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^{n}$$\end{document}, μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} are some real parameters. Under the appropriate assumptions of potential functions V and f, the existence of entire solutions to the above equation on the Heisenberg group is obtained by using the mountain pass theorem and the concentration compactness principle. The results presented here extend or complete recent papers and are new to critical equations involving (p, q)-Laplacian operators and convolution terms on Heisenberg group.
引用
收藏
相关论文
共 50 条
  • [1] Nontrivial Solutions for a (p, q)-Type Critical Choquard Equation on the Heisenberg Group
    Yang, Baoling
    Zhang, Deli
    Liang, Sihua
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)
  • [2] HIGH AND LOW PERTURBATIONS OF THE CRITICAL CHOQUARD EQUATION ON THE HEISENBERG GROUP
    Bai, Shujie
    Repovs, Dusan
    Song, Yueqiang
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2024, 29 (3-4) : 153 - 178
  • [3] NONTRIVIAL SOLUTIONS OF QUASILINEAR CHOQUARD EQUATION INVOLVING THE p-LAPLACIAN OPERATOR AND CRITICAL NONLINEARITIES
    Liang, Shuaishuai
    Song, Yueqiang
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2022, 35 (5-6) : 359 - 370
  • [4] Some existence results for critical nonlocal Choquard equation on the Heisenberg group
    Bai, Shujie
    Song, Yueqiang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 127
  • [5] NONTRIVIAL SOLUTIONS FOR THE CHOQUARD EQUATION WITH INDEFINITE LINEAR PART AND UPPER CRITICAL EXPONENT
    Guo, Ting
    Tang, Xianhua
    Zhang, Qi
    Gao, Zu
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (03) : 1563 - 1579
  • [6] Multiplicity and concentration of nontrivial nonnegative solutions for a fractional Choquard equation with critical exponent
    Shaoxiong Chen
    Yue Li
    Zhipeng Yang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [7] Multiplicity and concentration of nontrivial nonnegative solutions for a fractional Choquard equation with critical exponent
    Chen, Shaoxiong
    Li, Yue
    Yang, Zhipeng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 114 (01)
  • [8] Existence of nontrivial weak solutions for a quasilinear Choquard equation
    Lee, Jongrak
    Kim, Jae-Myoung
    Bae, Jung-Hyun
    Park, Kisoeb
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [9] Existence of nontrivial weak solutions for a quasilinear Choquard equation
    Jongrak Lee
    Jae-Myoung Kim
    Jung-Hyun Bae
    Kisoeb Park
    Journal of Inequalities and Applications, 2018
  • [10] Nontrivial weak solutions for a (p, q)-Laplacian equation involving discontinuities with critical exponent
    Zouai, Raid
    Benouhiba, Nawel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (02)