SOME COMBINATORIAL GEOMETRY FOR CONVEX QUADRILATERALS

被引:0
|
作者
John Francis
机构
[1] Eötvös University,Department of Geometry
关键词
Combinatorial Geometry; Convex Quadrilateral; Nonintersecting Convex;
D O I
10.1023/A:1004803226093
中图分类号
学科分类号
摘要
Any nine points in the plane, no three collinear, contain the vertices of two nonintersecting convex quadrilaterals. Extensions.
引用
收藏
页码:145 / 152
页数:7
相关论文
共 50 条
  • [1] TORIC GEOMETRY OF CONVEX QUADRILATERALS
    Legendre, Eveline
    JOURNAL OF SYMPLECTIC GEOMETRY, 2011, 9 (03) : 343 - 385
  • [2] On convex quadrilaterals
    Patel, Pratik
    Underwood, Robert
    MATHEMATICAL GAZETTE, 2011, 95 (533): : 330 - 333
  • [3] On the classification of convex quadrilaterals
    Josefsson, Martin
    MATHEMATICAL GAZETTE, 2016, 100 (547): : 68 - 85
  • [4] An evolutionary structure of convex quadrilaterals
    Zachos, Anastasios N.
    Zouzoulas, Gerasimos
    JOURNAL OF CONVEX ANALYSIS, 2008, 15 (02) : 411 - 426
  • [5] CURVILINEAR GRIDS OF CONVEX QUADRILATERALS
    IVANENKO, SA
    CHARAKHCHYAN, AA
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1988, 28 (02): : 126 - 133
  • [6] Acute triangulations of convex quadrilaterals
    Cavicchioli, Maddalena
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1253 - 1256
  • [7] Ellipses circumscribing convex quadrilaterals
    Munn, W. D.
    MATHEMATICAL GAZETTE, 2008, 92 (525): : 566 - 568
  • [8] QUADRILATERALS INSCRIBED IN CONVEX CURVES
    Matschke, Benjamin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (08) : 5719 - 5738
  • [9] New dualities in convex quadrilaterals
    Dalcin, Mario
    MATHEMATICAL GAZETTE, 2022, 106 (566): : 269 - 280
  • [10] SOME COMBINATORIAL PROBLEMS IN THEORY OF CONVEX SETS
    CHAKERIA.GD
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (04): : 439 - &