Higher Siegel–Weil formula for unitary groups: the non-singular terms

被引:0
|
作者
Tony Feng
Zhiwei Yun
Wei Zhang
机构
[1] University of California,Department of Mathematics
[2] Massachusetts Institute of Technology,Department of Mathematics
来源
Inventiones mathematicae | 2024年 / 235卷
关键词
Special cycle; Shtuka; Hitchin moduli; Springer theory; Arithmetic Siegel–Weil; Local density;
D O I
暂无
中图分类号
学科分类号
摘要
We construct special cycles on the moduli stack of hermitian shtukas. We prove an identity between (1) the rth\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r^{\mathrm{th}}$\end{document} central derivative of non-singular Fourier coefficients of a normalized Siegel–Eisenstein series, and (2) the degree of special cycles of “virtual dimension 0” on the moduli stack of hermitian shtukas with r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r$\end{document} legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the additional feature of encompassing all higher derivatives of the Eisenstein series.
引用
收藏
页码:569 / 668
页数:99
相关论文
共 50 条