Diagnostic value of deep learning reconstruction for radiation dose reduction at abdominal ultra-high-resolution CT

被引:0
|
作者
Yuko Nakamura
Keigo Narita
Toru Higaki
Motonori Akagi
Yukiko Honda
Kazuo Awai
机构
[1] Hiroshima University,Diagnostic Radiology
来源
European Radiology | 2021年 / 31卷
关键词
Liver; Tomography, X-ray computed; Deep learning; Radiation dosage;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:4700 / 4709
页数:9
相关论文
共 50 条
  • [1] Diagnostic value of deep learning reconstruction for radiation dose reduction at abdominal ultra-high-resolution CT
    Nakamura, Yuko
    Narita, Keigo
    Higaki, Toru
    Akagi, Motonori
    Honda, Yukiko
    Awai, Kazuo
    EUROPEAN RADIOLOGY, 2021, 31 (07) : 4700 - 4709
  • [2] Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT
    Motonori Akagi
    Yuko Nakamura
    Toru Higaki
    Keigo Narita
    Yukiko Honda
    Jian Zhou
    Zhou Yu
    Naruomi Akino
    Kazuo Awai
    European Radiology, 2019, 29 : 6163 - 6171
  • [3] Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT
    Akagi, Motonori
    Nakamura, Yuko
    Higaki, Toru
    Narita, Keigo
    Honda, Yukiko
    Zhou, Jian
    Yu, Zhou
    Akino, Naruomi
    Awai, Kazuo
    EUROPEAN RADIOLOGY, 2019, 29 (11) : 6163 - 6171
  • [4] Correction to: Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT
    Motonori Akagi
    Yuko Nakamura
    Toru Higaki
    Keigo Narita
    Yukiko Honda
    Jian Zhou
    Zhou Yu
    Naruomi Akino
    Kazuo Awai
    European Radiology, 2019, 29 : 4526 - 4527
  • [5] Ultra-High-Resolution CT of the Head and Neck with Deep Learning Reconstruction-Assessment of Image Quality and Radiation Exposure and Intraindividual Comparison with Normal-Resolution CT
    Altmann, Sebastian
    Mercado, Mario A. Abello A.
    Ucar, Felix A.
    Kronfeld, Andrea
    Al-Nawas, Bilal
    Mukhopadhyay, Anirban
    Booz, Christian
    Brockmann, Marc A.
    Othman, Ahmed E.
    DIAGNOSTICS, 2023, 13 (09)
  • [6] Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT (10.1007/s00330-019-06170-3, 2019)
    Akagi, Motonori
    Nakamura, Yuko
    Higaki, Toru
    Narita, Keigo
    Honda, Yukiko
    Zhou, Jian
    Yu, Zhou
    Akino, Naruomi
    Awai, Kazuo
    EUROPEAN RADIOLOGY, 2019, 29 (08) : 4526 - 4527
  • [7] Evaluation of moyamoya disease in CT angiography using ultra-high-resolution computed tomography: Application of deep learning reconstruction
    Fukushima, Yasuhiro
    Fushimi, Yasutaka
    Funaki, Takeshi
    Sakata, Akihiko
    Hinoda, Takuya
    Nakajima, Satoshi
    Sakamoto, Ryo
    Yoshida, Kazumichi
    Miyamoto, Susumu
    Nakamoto, Yuji
    EUROPEAN JOURNAL OF RADIOLOGY, 2022, 151
  • [8] Ultra-high-resolution CT of the temporal bone: Comparison between deep learning reconstruction and hybrid and model-based iterative reconstruction
    Beysang, Achille
    Villani, Nicolas
    Boubaker, Fatma
    Puel, Ulysse
    Eliezer, Michael
    Hossu, Gabriela
    Haioun, Karim
    Blum, Alain
    Teixeira, Pedro Augusto Gondim
    Parietti-Winkler, Cecile
    Gillet, Romain
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2024, 105 (06) : 233 - 242
  • [9] Improving image quality of the middle ear with ultra-high-resolution CT coupled with deep-learning image reconstruction algorithm
    Greffier, Joel
    Soyer, Philippe
    Dabli, Djamel
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2024, 105 (06) : 211 - 212
  • [10] Radiation dose reduction and image quality improvement with ultra-high resolution temporal bone CT using deep learning-based reconstruction: An anatomical study
    Boubaker, Fatma
    Puel, Ulysse
    Eliezer, Michael
    Hossu, Gabriela
    Assabah, Bouchra
    Haioun, Karim
    Blum, Alain
    Gondim-Teixeira, Pedro Augusto
    Parietti-Winkler, Cecile
    Gillet, Romain
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2024, 105 (10) : 371 - 378