Half-space type theorems in warped product spaces with one-dimensional factor

被引:0
|
作者
Heudson Mirandola
机构
[1] Instituto de Matemática Pura e Aplicada,Departamento de Engenharia e Ciências Exatas, Centro Universitário Norte do Espírito Santo
[2] Universidade Federal do Espírito Santo,undefined
来源
Geometriae Dedicata | 2009年 / 138卷
关键词
Mean curvature; Warped product spaces; Proper immersion; Maximum principle; 53C42; 53A10;
D O I
暂无
中图分类号
学科分类号
摘要
This work states some half-space type theorems in a warped product space of the form I ×ρM, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I \subseteq {\bf R}}$$\end{document} is an open interval and M is either a compact n-manifold, or a complete simply connected surface with constant curvature c ≤ 0. Such theorems generalize the classical half-space theorem for minimal surfaces in R3, obtained by Hoffmann and Meeks (Invent Math 101:373–377, 1990), and recent results for surfaces contained in a slab of R ×ρM, obtained by Dajczer and Alías (Comment Math Helvetici 81:653–663, 2006).
引用
收藏
页码:117 / 127
页数:10
相关论文
共 50 条