Semi-Bloch Functions in Several Complex Variables

被引:0
|
作者
Ulf Backlund
Linus Carlsson
Anders Fällström
Håkan Persson
机构
[1] Danderyds Gymnasium,Academy of Culture and Communication
[2] Mälardalen University,Department of Mathematics and mathematical Statistics
[3] Umeå University,Department of Mathematics
[4] Uppsala University,undefined
来源
关键词
Semi-Bloch functions; Bloch functions; Normal functions; Kobayashi–Royden pseudometric; 32A18; 30D45;
D O I
暂无
中图分类号
学科分类号
摘要
Let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} be an n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-dimensional complex manifold. A holomorphic function f:M→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:M\rightarrow {\mathbb {C}}$$\end{document} is said to be semi-Bloch if for every λ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in {\mathbb {C}}$$\end{document} the function gλ=exp(λf(z))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\lambda }=\text {exp}(\lambda f(z))$$\end{document} is normal on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}. We characterize semi-Bloch functions on infinitesimally Kobayashi non-degenerate M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} in geometric as well as analytic terms. Moreover, we show that on such manifolds, semi-Bloch functions are normal.
引用
收藏
页码:463 / 473
页数:10
相关论文
共 50 条