Buffer phenomenon in systems close to two-dimensional Hamiltonian ones

被引:0
|
作者
Kolesov A.Yu. [1 ]
Mishchenko E.F. [2 ]
Rozov N.Kh. [3 ]
机构
[1] Yaroslavl State University, Yaroslavl, 150000
[2] Steklov Institute of Mathematics, Russian Academy of Sciences, Moscow, 117333
[3] Moscow State University, Vorob'evy gory, Moscow
基金
俄罗斯基础研究基金会;
关键词
Periodic Solution; STEKLOV Institute; Simple Zero; Partial Limit; Stable Periodic Solution;
D O I
10.1134/S0081543806050105
中图分类号
学科分类号
摘要
Plane Hamiltonian systems perturbed by small time-periodic terms are considered. The conditions are established under which exponentially stable periodic solutions are accumulated infinitely in these systems as the perturbations tend to zero or, in other words, the buffer phenomenon occurs. It is shown that this phenomenon is typical for a wide range of classical mechanical problems described by equations of the pendulum type. © Pleiades Publishing, Inc., 2006.
引用
收藏
页码:S117 / S150
页数:33
相关论文
共 50 条
  • [1] Buffer phenomenon in systems close to two-dimensional Hamiltonian ones
    Kolesov, A. Yu.
    Mishchenko, E. F.
    Rozov, N. Kh.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2006, 12 (01): : 109 - 141
  • [2] ON NONCONSERVATIVE PERIODIC-SYSTEMS CLOSE TO TWO-DIMENSIONAL HAMILTONIAN
    MOROZOV, AD
    SHILNIKOV, LP
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1983, 47 (03): : 327 - 334
  • [3] ON TWO-FREQUENCY QUASI-PERIODIC PERTURBATIONS OF SYSTEMS CLOSE TO TWO-DIMENSIONAL HAMILTONIAN ONES WITH A DOUBLE LIMIT CYCLE
    Kostromina, O. S.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2021, 31 (01): : 35 - 49
  • [4] Quasiperiodic Perturbations of Two-Dimensional Hamiltonian Systems
    A. D. Morozov
    K. E. Morozov
    Differential Equations, 2017, 53 : 1557 - 1566
  • [5] Two-dimensional isochronous nonstandard Hamiltonian systems
    A. Durga Devi
    R. Gladwin Pradeep
    V. K. Chandrasekar
    M. Lakshmanan
    Journal of Engineering Mathematics, 2017, 104 : 63 - 75
  • [6] Two-dimensional isochronous nonstandard Hamiltonian systems
    Devi, A. Durga
    Pradeep, R. Gladwin
    Chandrasekar, V. K.
    Lakshmanan, M.
    JOURNAL OF ENGINEERING MATHEMATICS, 2017, 104 (01) : 63 - 75
  • [7] Quasiperiodic Perturbations of Two-Dimensional Hamiltonian Systems
    Morozov, A. D.
    Morozov, K. E.
    DIFFERENTIAL EQUATIONS, 2017, 53 (12) : 1557 - 1566
  • [8] ON THE BIRTH OF A STRANGE ATTRACTOR IN SYSTEMS CLOSE TO HAMILTONIAN ONES
    AFRAIMOVICH, VS
    RABINOVICH, MI
    UGODNIKOV, AD
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1984, 27 (10): : 1346 - 1349
  • [9] TWO-DIMENSIONAL HYDRODYNAMICS AS A CLASS OF SPECIAL HAMILTONIAN SYSTEMS
    Kulyk, Kostyantyn M.
    Yanovsky, Volodymyr V.
    EAST EUROPEAN JOURNAL OF PHYSICS, 2024, (02): : 134 - 141
  • [10] Geometric interpretation of chaos in two-dimensional Hamiltonian systems
    Kandrup, HE
    PHYSICAL REVIEW E, 1997, 56 (03): : 2722 - 2732