On Almost Kenmotsu Manifolds Satisfying Some Nullity Distributions

被引:1
|
作者
Yaning Wang
Ximin Liu
机构
[1] Henan Normal University,Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, School of Mathematics and Information Sciences
[2] Dalian University of Technology,School of Mathematical Sciences
关键词
Almost Kenmotsu manifold; Generalized nullity distribution; -Ricci semisymmetry; Cyclic-parallel Ricci tensor; -Parallel Ricci tensor; Primary 53D15; Secondary 53C25, 53C35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that a (k,μ)′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\mu )'$$\end{document}-almost Kenmotsu manifold M2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{2n+1}$$\end{document} is ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}-Ricci semisymmetric if and only if either it is Einstein or it is locally isometric to the Riemannian product Hn+1(-4)×Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^{n+1}(-4)\times {\mathbb {R}}^n$$\end{document}. Some results on generalized (k,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\mu )$$\end{document} and (k,μ)′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\mu )'$$\end{document}-almost Kenmotsu manifolds satisfying some conditions related to the cyclic-parallelism and η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-parallelism of Ricci tensor are also obtained.
引用
收藏
页码:347 / 353
页数:6
相关论文
共 50 条