Advanced Data Collection and Analysis in Data-Driven Manufacturing Process

被引:0
|
作者
Ke Xu
Yingguang Li
Changqing Liu
Xu Liu
Xiaozhong Hao
James Gao
Paul G. Maropoulos
机构
[1] Nanjing University of Aeronautics and Astronautics,
[2] Nanjing Tech University,undefined
[3] University of Greenwich,undefined
[4] Queen’s University Belfast,undefined
关键词
Data-driven manufacturing; Intelligent manufacturing; Process monitoring; Data analysis; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
The rapidly increasing demand and complexity of manufacturing process potentiates the usage of manufacturing data with the highest priority to achieve precise analyze and control, rather than using simplified physical models and human expertise. In the era of data-driven manufacturing, the explosion of data amount revolutionized how data is collected and analyzed. This paper overviews the advance of technologies developed for in-process manufacturing data collection and analysis. It can be concluded that groundbreaking sensoring technology to facilitate direct measurement is one important leading trend for advanced data collection, due to the complexity and uncertainty during indirect measurement. On the other hand, physical model-based data analysis contains inevitable simplifications and sometimes ill-posed solutions due to the limited capacity of describing complex manufacturing process. Machine learning, especially deep learning approach has great potential for making better decisions to automate the process when fed with abundant data, while trending data-driven manufacturing approaches succeeded by using limited data to achieve similar or even better decisions. And these trends can demonstrated be by analyzing some typical applications of manufacturing process.
引用
收藏
相关论文
共 50 条
  • [1] Advanced Data Collection and Analysis in Data-Driven Manufacturing Process
    Ke Xu
    Yingguang Li
    Changqing Liu
    Xu Liu
    Xiaozhong Hao
    James Gao
    Paul GMaropoulos
    Chinese Journal of Mechanical Engineering, 2020, 33 (03) : 40 - 60
  • [2] Advanced Data Collection and Analysis in Data-Driven Manufacturing Process
    Xu, Ke
    Li, Yingguang
    Liu, Changqing
    Liu, Xu
    Hao, Xiaozhong
    Gao, James
    Maropoulos, Paul G.
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2020, 33 (01)
  • [3] Advanced Data Collection and Analysis in Data-Driven Manufacturing Process
    Ke Xu
    Yingguang Li
    Changqing Liu
    Xu Liu
    Xiaozhong Hao
    James Gao
    Paul G.Maropoulos
    Chinese Journal of Mechanical Engineering, 2020, (03) : 40 - 60
  • [4] Advanced Data-Driven Manufacturing
    Gaudin, Theophile
    Schilter, Oliver
    Zipoli, Federico
    Laino, Teodoro
    ERCIM NEWS, 2020, (122): : 45 - 46
  • [5] Data Analytics for Manufacturing Systems A Data-Driven Approach for Process Optimization
    Ungermann, Florian
    Kuhnle, Andreas
    Stricker, Nicole
    Lanza, Gisela
    52ND CIRP CONFERENCE ON MANUFACTURING SYSTEMS (CMS), 2019, 81 : 369 - 374
  • [6] DATA-DRIVEN SCHEDULING FOR THE PHOTOLITHOGRAPHY PROCESS IN SEMICONDUCTOR MANUFACTURING
    Huang, Cheng-Ting
    Hsieh, Tsung-Jung
    Lin, Bertrand M. T.
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2025, 21 (03) : 1946 - 1963
  • [7] A Data-Driven Approach for Improving Sustainability Assessment in Advanced Manufacturing
    Li, Yunpeng
    Zhang, Heng
    Roy, Utpal
    Lee, Y. Tina
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 1736 - 1745
  • [8] Data-driven smart manufacturing
    Tao, Fei
    Qi, Qinglin
    Liu, Ang
    Kusiak, Andrew
    JOURNAL OF MANUFACTURING SYSTEMS, 2018, 48 : 157 - 169
  • [9] Data-driven matching method for processing parameters in process manufacturing
    Cheng J.
    Wang J.
    Wang, Jian (jwang@tongji.edu.cn), 1600, CIMS (23): : 2361 - 2370
  • [10] Data-Driven Modelling and Robust Control of a Semiconductor Manufacturing Process
    Mayr, Paul
    Kleindienst, Martin
    Koch, Stefan
    Reichhartinger, Markus
    Horn, Martin
    IFAC PAPERSONLINE, 2023, 56 (02): : 4234 - 4239