A proof-theoretic analysis of collection

被引:0
|
作者
Lev D. Beklemishev
机构
[1] Steklov Mathematical Institute,
[2] Gubkina 8,undefined
[3] 117966 Moscow,undefined
[4] Russia (e-mail: lev@bekl.mian.su) ,undefined
来源
关键词
Mathematics Subject Classification (1991): Primary: 03F30. Secondary: 03F05, 03D20;
D O I
暂无
中图分类号
学科分类号
摘要
By a result of Paris and Friedman, the collection axiom schema for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Sigma_{n+1}$\end{document} formulas, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $B\Sigma_{n+1}$\end{document}, is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Pi_{n+2}$\end{document} conservative over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $I\Sigma_n$\end{document}. We give a new proof-theoretic proof of this theorem, which is based on a reduction of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $B\Sigma_n$\end{document} to a version of collection rule and a subsequent analysis of this rule via Herbrand's theorem. A generalization of this method allows us to improve known results on reflection principles for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $B\Sigma_n$\end{document} and to answer some technical questions left open by Sieg [23] and Hájek [9]. We also give a new proof of independence of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $B\Sigma_{n+1}$\end{document} over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $I\Sigma_n$\end{document} by a direct recursion-theoretic argument and answer an open problem formulated by Gaifman and Dimitracopoulos [8].
引用
收藏
页码:275 / 296
页数:21
相关论文
共 50 条