Existence and behavior of positive solutions for a class of quasilinear elliptic problems with discontinuous nonlinearity

被引:0
|
作者
Nian Zhang
Gao Jia
机构
[1] University of Shanghai for Science and Technology,Business School
[2] University of Shanghai for Science and Technology,College of Science
关键词
Discontinuous nonlinearity; Nondifferentiable functional; Lipschitz functional; Variational methods; 35A15; 35J60; 35J62;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence and behavior of positive solutions of the following quasilinear elliptic problems with discontinuous nonlinearities: -Δu+V(x)u-κuΔ(u2)=H(u-δ)f(x,u),inRN,(Pδ)u∈D1,2(RN)∩Wloc2,2(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}&-\Delta u+V(x)u-\kappa u\Delta (u^2)=H(u-\delta )f(x,u),~~\text {in}~{\mathbb {R}}^{N}, \qquad \qquad (P_{\delta })\\&u\in D^{1,2}({\mathbb {R}}^{N})\cap W^{2,2}_{\mathrm{loc}}({\mathbb {R}}^{N}), \end{aligned} \right. \end{aligned}$$\end{document}where δ,κ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ,~\kappa >0$$\end{document}, N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}, V:RN→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V:{\mathbb {R}}^{N}\rightarrow {\mathbb {R}}$$\end{document} is a nonnegative continuous function, which can vanish at infinity, that is, V(x)→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(x)\rightarrow 0$$\end{document} as |x|→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x|\rightarrow \infty $$\end{document}, f:RN×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:{\mathbb {R}}^{N}\times {\mathbb {R}}\rightarrow {\mathbb {R}}$$\end{document} is a Carathéodory function and H is the Heaviside function. Via a suitable nonsmooth truncation, we apply the penalization method combined with the Mountain Pass Theorem for locally Lipschitz functional to obtain a positive solution uδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{\delta }$$\end{document} of (Pδ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_{\delta })$$\end{document} for all δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta >0$$\end{document}. Besides, we establish the convergent behavior of positive solution sequence {uδ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{u_{\delta }\}$$\end{document}, that is, uδ→u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{\delta }\rightarrow u_{0}$$\end{document} in D1,2(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{1,2}({\mathbb {R}}^{N})$$\end{document} as δ→0+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \rightarrow 0^{+}$$\end{document}, where u0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{0}$$\end{document} is a positive solution of (P0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_{0})$$\end{document}.
引用
收藏
相关论文
共 50 条