Representation of cyclotomic fields and their subfields

被引:0
|
作者
A. Satyanarayana Reddy
Shashank K. Mehta
Arbind K. Lal
机构
[1] Shiv Nadar University,Department of Mathematics
[2] Indian Institute of Technology,Department of Computer Science and Engineering
[3] Indian Institute of Technology,Department of Mathematics and Statistics
关键词
Circulant matrix; Companion Matrix; Cyclotomic field; Cyclotomic Polynomial; Möbius Function; Ramanujan Sum;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{K}$$\end{document} be a finite extension of a characteristic zero field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}$$\end{document}. We say that a pair of n × n matrices (A,B) over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}$$\end{document} represents \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{K}$$\end{document} if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{K} \cong {{\mathbb{F}\left[ A \right]} \mathord{\left/ {\vphantom {{\mathbb{F}\left[ A \right]} {\left\langle B \right\rangle }}} \right. \kern-\nulldelimiterspace} {\left\langle B \right\rangle }}$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}\left[ A \right]$$\end{document} denotes the subalgebra of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{M}_n \left( \mathbb{F} \right)$$\end{document} containing A and 〈B〉 is an ideal in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}\left[ A \right]$$\end{document}, generated by B. In particular, A is said to represent the field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{K}$$\end{document} if there exists an irreducible polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\left( x \right) \in \mathbb{F}\left[ x \right]$$\end{document} which divides the minimal polynomial of A and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{K} \cong {{\mathbb{F}\left[ A \right]} \mathord{\left/ {\vphantom {{\mathbb{F}\left[ A \right]} {\left\langle {q\left( A \right)} \right\rangle }}} \right. \kern-\nulldelimiterspace} {\left\langle {q\left( A \right)} \right\rangle }}$$\end{document}.
引用
收藏
页码:203 / 230
页数:27
相关论文
共 50 条